

Embedded Pascal

Z80/180

805x

Version 1.2

�� TOC \o "1-3" �

Embedded Pascal Compiler for Z80/Z180 and 805x CPU’s	� PAGEREF _Toc416442228 \h ��7�

The Basic Embedded Pascal Language Elements	� PAGEREF _Toc416442229 \h ��8�

Basic Symbols	� PAGEREF _Toc416442230 \h ��8�

Reserved Words	� PAGEREF _Toc416442231 \h ��8�

Standard Identifiers	� PAGEREF _Toc416442232 \h ��8�

Delimiters	� PAGEREF _Toc416442233 \h ��8�

Program Lines	� PAGEREF _Toc416442234 \h ��9�

Standard scalar types	� PAGEREF _Toc416442235 \h ��10�

Integer	� PAGEREF _Toc416442236 \h ��10�

Word	� PAGEREF _Toc416442237 \h ��10�

Longint	� PAGEREF _Toc416442238 \h ��10�

Byte	� PAGEREF _Toc416442239 \h ��10�

Real	� PAGEREF _Toc416442240 \h ��10�

Boolean	� PAGEREF _Toc416442241 \h ��10�

Char	� PAGEREF _Toc416442242 \h ��10�

User defined language elements	� PAGEREF _Toc416442243 \h ��12�

Identifiers	� PAGEREF _Toc416442244 \h ��12�

Numbers	� PAGEREF _Toc416442245 \h ��12�

Strings	� PAGEREF _Toc416442246 \h ��12�

Control Characters	� PAGEREF _Toc416442247 \h ��13�

Comments	� PAGEREF _Toc416442248 \h ��13�

Compiler Directives	� PAGEREF _Toc416442249 \h ��13�

Program heading and program block	� PAGEREF _Toc416442250 \h ��15�

Link Instruction	� PAGEREF _Toc416442251 \h ��15�

Program Heading	� PAGEREF _Toc416442252 \h ��15�

Declaration Part	� PAGEREF _Toc416442253 \h ��15�

Label Declaration Part	� PAGEREF _Toc416442254 \h ��15�

Constant Definition Part	� PAGEREF _Toc416442255 \h ��16�

Type Definition Part	� PAGEREF _Toc416442256 \h ��16�

Variable Declaration Part	� PAGEREF _Toc416442257 \h ��16�

Procedure and Function Declaration Part	� PAGEREF _Toc416442258 \h ��17�

Statement Part	� PAGEREF _Toc416442259 \h ��17�

Expressions	� PAGEREF _Toc416442260 \h ��18�

Operators	� PAGEREF _Toc416442261 \h ��18�

Unary Minus	� PAGEREF _Toc416442262 \h ��18�

Not Operator	� PAGEREF _Toc416442263 \h ��18�

MultipIying Operators	� PAGEREF _Toc416442264 \h ��18�

Adding Operators	� PAGEREF _Toc416442265 \h ��19�

Relational Operators	� PAGEREF _Toc416442266 \h ��19�

Statements	� PAGEREF _Toc416442267 \h ��20�

Simple Statements	� PAGEREF _Toc416442268 \h ��20�

Assignment Statement	� PAGEREF _Toc416442269 \h ��20�

Procedure Statement	� PAGEREF _Toc416442270 \h ��20�

Goto Statement	� PAGEREF _Toc416442271 \h ��20�

Empty Statement	� PAGEREF _Toc416442272 \h ��21�

Structured Statements	� PAGEREF _Toc416442273 \h ��21�

Compound Statement	� PAGEREF _Toc416442274 \h ��21�

Conditional Statements	� PAGEREF _Toc416442275 \h ��21�

If Statement	� PAGEREF _Toc416442276 \h ��21�

Case Statement	� PAGEREF _Toc416442277 \h ��22�

Repetitive Statements	� PAGEREF _Toc416442278 \h ��23�

For Statement	� PAGEREF _Toc416442279 \h ��23�

Repeat Statement	� PAGEREF _Toc416442280 \h ��24�

Scalar and subrange types	� PAGEREF _Toc416442281 \h ��25�

Scalar Type	� PAGEREF _Toc416442282 \h ��25�

Subrange Type	� PAGEREF _Toc416442283 \h ��25�

Type Conversion	� PAGEREF _Toc416442284 \h ��26�

Range Checking	� PAGEREF _Toc416442285 \h ��26�

String type	� PAGEREF _Toc416442286 \h ��27�

String Type Definition	� PAGEREF _Toc416442287 \h ��27�

String Expressions	� PAGEREF _Toc416442288 \h ��27�

String Assignment	� PAGEREF _Toc416442289 \h ��27�

String Procedures	� PAGEREF _Toc416442290 \h ��28�

Delete	� PAGEREF _Toc416442291 \h ��28�

Insert	� PAGEREF _Toc416442292 \h ��28�

String Functions	� PAGEREF _Toc416442293 \h ��28�

Copy	� PAGEREF _Toc416442294 \h ��28�

Length	� PAGEREF _Toc416442295 \h ��29�

Pos	� PAGEREF _Toc416442296 \h ��29�

Strings and Characters	� PAGEREF _Toc416442297 \h ��29�

IntToStr and IntToHex	� PAGEREF _Toc416442298 \h ��29�

StrToInt and StrToIntDef	� PAGEREF _Toc416442299 \h ��30�

Type String[0]	� PAGEREF _Toc416442300 \h ��30�

Array type	� PAGEREF _Toc416442301 \h ��31�

Array Definition	� PAGEREF _Toc416442302 \h ��31�

Multidimensional Arrays	� PAGEREF _Toc416442303 \h ��31�

Character Arrays	� PAGEREF _Toc416442304 \h ��32�

Predefined Arrays	� PAGEREF _Toc416442305 \h ��32�

Record type	� PAGEREF _Toc416442306 \h ��33�

Record Definition	� PAGEREF _Toc416442307 \h ��33�

With Statement	� PAGEREF _Toc416442308 \h ��35�

Variant Records	� PAGEREF _Toc416442309 \h ��36�

Set type	� PAGEREF _Toc416442310 \h ��36�

Typed constants	� PAGEREF _Toc416442311 \h ��37�

Unstructured Typed Constants	� PAGEREF _Toc416442312 \h ��37�

Structured Typed Constants	� PAGEREF _Toc416442313 \h ��37�

Array Constants	� PAGEREF _Toc416442314 \h ��37�

Multi-dimensional Array Constants	� PAGEREF _Toc416442315 \h ��38�

Record Constants	� PAGEREF _Toc416442316 \h ��38�

Write and Read	� PAGEREF _Toc416442317 \h ��38�

Pointer types	� PAGEREF _Toc416442318 \h ��39�

GetMem	� PAGEREF _Toc416442319 \h ��41�

FreeMem	� PAGEREF _Toc416442320 \h ��41�

SizeOf(Var)	� PAGEREF _Toc416442321 \h ��41�

@Var and addr(Var)	� PAGEREF _Toc416442322 \h ��42�

Hints	� PAGEREF _Toc416442323 \h ��42�

The heap	� PAGEREF _Toc416442324 \h ��42�

Procedures and Functions	� PAGEREF _Toc416442325 \h ��43�

Parameters	� PAGEREF _Toc416442326 \h ��43�

Relaxations on Parameter Type Checking	� PAGEREF _Toc416442327 \h ��44�

Untyped Variable Parameters	� PAGEREF _Toc416442328 \h ��44�

Procedures	� PAGEREF _Toc416442329 \h ��44�

Procedure Declaration	� PAGEREF _Toc416442330 \h ��44�

Extensions to Pascal as defined by N.Wirth	� PAGEREF _Toc416442331 \h ��45�

Exit	� PAGEREF _Toc416442332 \h ��45�

Break	� PAGEREF _Toc416442333 \h ��45�

Continue	� PAGEREF _Toc416442334 \h ��46�

Standard Procedures	� PAGEREF _Toc416442335 \h ��46�

Move	� PAGEREF _Toc416442336 \h ��46�

Fillchar	� PAGEREF _Toc416442337 \h ��46�

Inc	� PAGEREF _Toc416442338 \h ��46�

Dec	� PAGEREF _Toc416442339 \h ��47�

Functions	� PAGEREF _Toc416442340 \h ��47�

Function Declaration	� PAGEREF _Toc416442341 \h ��47�

Standard Functions	� PAGEREF _Toc416442342 \h ��48�

Arithmetic Functions	� PAGEREF _Toc416442343 \h ��48�

Abs	� PAGEREF _Toc416442344 \h ��48�

Scalar Functions	� PAGEREF _Toc416442345 \h ��48�

Pred	� PAGEREF _Toc416442346 \h ��48�

Succ	� PAGEREF _Toc416442347 \h ��48�

Odd	� PAGEREF _Toc416442348 \h ��49�

Transfer Functions	� PAGEREF _Toc416442349 \h ��49�

Chr	� PAGEREF _Toc416442350 \h ��49�

Ord	� PAGEREF _Toc416442351 \h ��49�

Miscellaneous Standard Functions	� PAGEREF _Toc416442352 \h ��49�

Hi	� PAGEREF _Toc416442353 \h ��49�

Lo	� PAGEREF _Toc416442354 \h ��49�

HiWord	� PAGEREF _Toc416442355 \h ��49�

LoWord	� PAGEREF _Toc416442356 \h ��49�

SizeOf	� PAGEREF _Toc416442357 \h ��49�

Upcase	� PAGEREF _Toc416442358 \h ��50�

POS	� PAGEREF _Toc416442359 \h ��50�

POSN	� PAGEREF _Toc416442360 \h ��50�

Forward References	� PAGEREF _Toc416442361 \h ��50�

Including files	� PAGEREF _Toc416442362 \h ��52�

Overlay system	� PAGEREF _Toc416442363 \h ��53�

Creating Overlays	� PAGEREF _Toc416442364 \h ��54�

Nested Overlays	� PAGEREF _Toc416442365 \h ��54�

Restrictions Imposed on Overlays	� PAGEREF _Toc416442366 \h ��55�

Data Area	� PAGEREF _Toc416442367 \h ��55�

Number of overlay Areas	� PAGEREF _Toc416442368 \h ��55�

Initialization of the overlay system	� PAGEREF _Toc416442369 \h ��55�

The minimum Pascal project	� PAGEREF _Toc416442370 \h ��56�

Embedded Pascal label convention	� PAGEREF _Toc416442371 \h ��56�

Using Skeletal code to understand Embedded Pascal	� PAGEREF _Toc416442372 \h ��57�

External and Global declarations	� PAGEREF _Toc416442373 \h ��58�

Declare a variable external	� PAGEREF _Toc416442374 \h ��58�

Declare a variable global	� PAGEREF _Toc416442375 \h ��58�

Declare a procedure or function external	� PAGEREF _Toc416442376 \h ��58�

Declare a procedure or function global	� PAGEREF _Toc416442377 \h ��58�

Using type declarations globally	� PAGEREF _Toc416442378 \h ��58�

About external and global labels	� PAGEREF _Toc416442379 \h ��59�

Absolute references	� PAGEREF _Toc416442380 \h ��60�

Recursion	� PAGEREF _Toc416442381 \h ��60�

The Optimizer	� PAGEREF _Toc416442382 \h ��61�

File locations	� PAGEREF _Toc416442383 \h ��62�

A typical Embedded Pascal Project - overview	� PAGEREF _Toc416442384 \h ��63�

Inline assembler	� PAGEREF _Toc416442385 \h ��64�

Compiler directives	� PAGEREF _Toc416442386 \h ��65�

Link Instruction	� PAGEREF _Toc416442387 \h ��65�

{#I IncludeFile}	� PAGEREF _Toc416442388 \h ��65�

{#S datalocation} and {#S-}	� PAGEREF _Toc416442389 \h ��65�

{#D+} and {#D-}	� PAGEREF _Toc416442390 \h ��66�

{#O nnnn}, {#O+} and {#O-}	� PAGEREF _Toc416442391 \h ��66�

{#C …}	� PAGEREF _Toc416442392 \h ��66�

{#C Define ConditionalLabel}	� PAGEREF _Toc416442393 \h ��66�

{#C IfDefined ConditionalLabel}	� PAGEREF _Toc416442394 \h ��67�

{#C IfNotDefined ConditionalLabel}	� PAGEREF _Toc416442395 \h ��67�

{#C Else}	� PAGEREF _Toc416442396 \h ��67�

{#C EndIf}	� PAGEREF _Toc416442397 \h ��67�

{#R+} and {#R-}	� PAGEREF _Toc416442398 \h ��67�

{#L+} and {#L-}	� PAGEREF _Toc416442399 \h ��67�

{#PAnyText}	� PAGEREF _Toc416442400 \h ��68�

Interrupt procedures	� PAGEREF _Toc416442401 \h ��69�

Internal data formats	� PAGEREF _Toc416442402 \h ��71�

Chars, Bytes	� PAGEREF _Toc416442403 \h ��71�

Words, Integers	� PAGEREF _Toc416442404 \h ��71�

Longint	� PAGEREF _Toc416442405 \h ��71�

Strings	� PAGEREF _Toc416442406 \h ��71�

Arrays	� PAGEREF _Toc416442407 \h ��71�

Records	� PAGEREF _Toc416442408 \h ��71�

Function results	� PAGEREF _Toc416442409 \h ��72�

Z80/Z180 or 805x Relocating Macro Assembler and Linker	� PAGEREF _Toc416442410 \h ��73�

Basic format of an assembler source file	� PAGEREF _Toc416442411 \h ��73�

Include files	� PAGEREF _Toc416442412 \h ��73�

Mnemonic extensions	� PAGEREF _Toc416442413 \h ��74�

Relocatable areas	� PAGEREF _Toc416442414 \h ��74�

Z80/Z180	� PAGEREF _Toc416442415 \h ��74�

805x	� PAGEREF _Toc416442416 \h ��74�

The Link instruction	� PAGEREF _Toc416442417 \h ��74�

Z80/Z180	� PAGEREF _Toc416442418 \h ��74�

805x	� PAGEREF _Toc416442419 \h ��74�

The ORG instruction	� PAGEREF _Toc416442420 \h ��75�

Unusual Assembler statements	� PAGEREF _Toc416442421 \h ��75�

Assembler statements	� PAGEREF _Toc416442422 \h ��76�

Notes on DS and conditional assembly statements	� PAGEREF _Toc416442423 \h ��78�

Numbers	� PAGEREF _Toc416442424 \h ��78�

Labels	� PAGEREF _Toc416442425 \h ��78�

operators	� PAGEREF _Toc416442426 \h ��79�

Macros	� PAGEREF _Toc416442427 \h ��79�

Overlays	� PAGEREF _Toc416442428 \h ��79�

Libraries	� PAGEREF _Toc416442429 \h ��80�

Errors	� PAGEREF _Toc416442430 \h ��82�

The Last Word	� PAGEREF _Toc416442431 \h ��82�

�

�Embedded Pascal Compiler for Z80/Z180 and 805x CPU’s

This manual describes the language definition for Embedded Pascal.

Embedded Pascal is a development environment that targets program development for embedded applications. Two separate versions of this compiler produce code for either Z80 and Z180 core processors or 8051/8052 type core processors, both which are found in a variety of embedded systems.

Embedded Pascal differs significantly from a “normal” Pascal compiler in that it produces assembler source code rather than executable code. Also, it has to produce extremely efficient code as embedded applications suffer from lack of memory resources as a rule.

Embedded Pascal creates code that is optimized to perform at maximum speed while keeping code size as low as possible. This is achieved by using direct addressing wherever possible without setting up stack frames which 8 bit processors cannot handle efficiently as a rule. To this end all variables, local and global as well as parameters are treated as static variables.

There is no compiler available for any 8 bit system that generates more compact code than Embedded Pascal !

Embedded Pascal can be kept fully source code compatible with Borlands superb Delphi compiler. This allows the usage of Delphi as a convenient and powerful development and simulation platform for your embedded application!

Embedded Pascal follows the Pascal Standard as defined by Borland very closely. However, small differences do exist for a number of reasons. Please study the following document carefully to avoid possible frustration.

Without going into detail, the following points must be taken into account:

“Real” number types are not supported directly.

No variable sets.

No variant records (“Unions” of record variables of differing types can be used instead)

“For loop” control variable may not be of longint type.

Case statement variable must be of byte or char type.

Embedded Pascal has a few extensions to the Pascal language such as binary constants. A number of compiler directives exist to aid with typical embedded systems memory limitations. For example code overlays and data memory sharing.

	

Embedded Pascal is integrated with a full feature assembler and linker, completing the development environment. Embedded Pascal is available for Windows 95. It is not intended to run on Windows NT.

�

The Basic Embedded Pascal Language Elements

This following documentation is not intended as a Pascal tutorial. Rather, it documents the Embedded Pascal language and points out differences to other Pascal compilers where required.

If you require a Pascal tutorial, it is recommended to obtain one of the many good books on Borlands Turbo Pascal. If you can, get a book on version 3. Embedded Pascal is heavily based on that version, perhaps not surprisingly since version 3 was the last Borland product to be written for 8 bit processors.

However, books on later versions are equally useful, the greatest difference between Embedded Pascal and later Borland Pascal releases being Borlands Units based system vs. Embedded Pascal module system and the absence of objects in Embedded Pascal. (Introduced with version 5 of Turbo Pascal).

However, many of the useful extensions to the Pascal language found in the latest Delphi compilers are also found in Embedded Pascal, such as the continue and break statements and some of the standard procedures and functions.

Basic Symbols

The basic vocabulary of Embedded Pascal consists of basic symbols divided into letters, digits, and special symbols

	Letters

A to Z, a to z and _ (underscore)

Digits 0123456789

Special symbols */=<>()[]{).,

No distinction is made between upper and lower case letters. Certain operators and delimiters are formed using two special symbols:

Assignment operator: : =

Relational operators: <> <= >=

Comments:	(* and *) may be used instead of { and }. It is also possible to use C-style comments using //

In addition, Embedded Pascal makes use of certain constructs to allow source code compatibility to other Pascal Compilers, most notably Borlands Delphi, which makes an excellent companion to Embedded Pascal for PC based development and simulation of an embedded project.

Embedded Pascal views all statements between {*} and a second {*} as comments, Borlands compilers however do not.

Reserved Words

Reserved words are integral parts of Embedded Pascal. They cannot be redefined and must therefore not be used as user defined identifiers.

ABSOLUTE, AND, ARRAY, ASM, BEGIN, BREAK, CASE, CONST, CONTINUE, DIV, DO, DOWNTO,

ELSE, END, EXIT, EXTERNAL, FOR, FORWARD, FUNCTION, GLOBAL, GOTO, IF,IN,LABEL,MOD,

NOT, OF, OR, PROCEDURE, PROGRAM, RECORD, REPEAT, SHL, SHR, STRING, THEN, TO,

TYPE, UNTIL, VAR, WHILE, WITH, XOR

Standard Identifiers

Embedded Pascal defines a number of standard identifiers of predefined types, constants, variables, procedures, and functions. Any of these identifiers may be redefined but it will mean the loss of the facility offered by that particular identifier and may lead to confusion The following standard identifiers are therefore best left to their special purposes:

 FALSE, TRUE, NIL, CHAR, BOOLEAN, INTEGER, BYTE, LONGINT, WORD, POINTER, SIZEOF,NEW,

 INP,ADDR, @, INC, DEC, MOVE, FILLCHAR, OUT, LENGTH, COPY, INTTOSTR, INTTOHEX,

INITOVERLAY, STRTOINT, STRTOINTDEF, LO, HI, LOWORD, HIWORD,INSERT,DELETE,UPCASE,

POS,POSN

Delimiters

Language elements must be separated by at least one of the following delimiters: a blank, an end of line, or a comment.

Program Lines

The maximum length of a program line is 250 characters.

�

Standard scalar types

A data type defines the set of values a variable may assume Every variable in a program must be associated with one and only one data type. Although data types in Embedded Pascal can be quite sophisticated, they are all built from simple (unstructured) types

A simple type may either be defined by the programmer (it is then called

a declared scalar type), or be one of the standard scalar types: integer,

word, longint, boolean, char, or byte. The following is a description of these six

standard scalar types.

Integer

Integers are whole numbers; in Embedded Pascal they are limited to a range of - 32768 through 32767. Integers occupy two bytes in memory.

Word

Words are whole numbers; in Embedded Pascal they are limited to a range of 0 through 65535. Words occupy two bytes in memory.

Longint

Longints are whole numbers; in Embedded Pascal they are limited to a range of -2147483648 through 2147483647. Longints occupy four bytes in memory.

Byte

Bytes are whole numbers; in Embedded Pascal they are limited to a range of 0 through 255. Bytes occupy one byte in memory.

Overflow of integer arithmetic operations is not detected. Notice in particular that partial results in numeric expressions must be kept within the range of the largest scalar involved in the expression. For instance, the expression 1000 * 100 I 50 will not yield 2000 as the multiplication causes an overflow if these values are stored in the type integer but the expression result will be correct if any one of the values is stored in a longint.

Real

Real numbers are not supported in this release. The type identifier “Real” is nevertheless reserved to be used in a future version of Embedded Pascal.

Boolean

A boolean value can assume either of the logical truth values denoted by the standard identifiers True and False. These are defined such that False =0 < True>0. A Boolean variable occupies one byte in memory.

Char

A Char value is one character in the ASCII character set. Characters are ordered according to their ASCII value, for example: 'A' < 'B'. The ordinal (ASCII) values of characters range from 0 to 255. A Char variable occupies one byte in memory.

	

All of the scalar types are completely assignment compatible with each other. In standard Pascal it is not possible to assign a char to an integer for example without using some kind of type conversion. In Embedded Pascal, it is legal to assign a char to any other scalar variable without any type conversion requirements.

�

User defined language elements

Identifiers

Identifiers are used to denote labels, constants, types, variables, procedures, and functions. An identifier consists of a letter or underscore followed by any combination of letters, digits, or underscores. An identifier is limited in length only by the line length of 250 characters, and all characters are significant

Examples:

PASCAL

square

persons_counted

BirthDate

	3rdRoot	illegal, starts with a digit

	Two Words	illegal, must not contain a space

As Embedded Pascal does not distinguish between upper and lower case letters, the use of mixed upper and lower case as in birthDate has no functional meaning. It is nevertheless encouraged as it leads to more legible identifiers. VeryLongidentifier is easier to read for the human reader than VERYLONGIDENTIFIER. This mixed mode will be used for all identifiers throughout this manual.

Numbers

Numbers are constants of integer type or of real type. Embedded Pascal does not support the Real number type(s) with the current release. Integer constants are whole numbers expressed in either decimal, hexadecimal or binary notation. Hexadecimal constants are identified by being preceded by a dollarsign: $1234 is a hexadecimal constant. Binary constants are preceded with a percentage sign: %1011100 is a binary constant.

	The decimal integer (longint) range is -2147483648 to +2147483647, the hexadecimal integer (longint) range is $0 to $FFFFFFFF. The binary integer (longint) range is %0 to %11111111111111111111111111111111.

Examples:

12345

-1

$123

$ABC

$123G	illegal, G is not a legal hexadecimal digit

%1011

%1003	illegal, 3 is not a legal binary digit

1.2345	illegal as an integer, contains a decimal part

Strings

A string constant is a sequence of characters enclosed in single quotes:

'This is a string constant’

A single quote may be contained in a string by writing two successive single quotes. Strings containing only a single character are of the standard type char. A string is identical in behavior to an array of Char of the same length. All string constants are compatible with all string types.

In Embedded Pascal an Array of Char can be used instead of the string type. It will behave in every respect to what you would expect from a string type. Note that this is not necessarily true of other Pascal implementations.

Examples:

'PASCAL'

'You''11 see'

 ‘’

As shown in the examples, a single quote within a string is written as two consecutive quotes.

The last example - the quotes enclosing no characters, denoting the empty string - is compatible only with string types.

Control Characters

Embedded Pascal also allows control characters to be embedded in strings.

The # symbol followed by an integer constant in the range 0..255 denotes a character of the corresponding ASCII value.

It should be noted that Embedded Pascal allows byte sized integer constants to be treated as char constants without the need of using the # symbol. The handling of the # symbol is provided for compatibility reasons to Borlands Pascal dialects.

Some Pascal dialects allow the use of the ^ character followed by an alpha character to denote control characters. Please not that this is not supported in Embedded Pascal. Use the decimal equivalent as constant instead.

Examples:

	

# 10	ASCII 10 decimal (Line Feed).

#$1B	ASCII lB hex (Escape).

10		ASCII 10 decimal (Line Feed).

$1B	ASCII lB hex (Escape).

Sequences of control characters may he concatenated into strings by writing them using a + between the individual characters:

#13+#10

#27+#20

Control characters may also be mixed with text strings:

'Waiting for input!’+#7+#7+#7+#7+’Please wake up'

Comments

A comment may be inserted anywhere in the program where a delimiter is legal. It is delimited by the curly braces { and }, which may be replaced by the symbols (* and *).

It is also possible to use the symbols // to comment the remainder of the line as can be done in the “C” language.

Note that Embedded Pascal treats {*} as legal start of a comment that can only be terminated by another {*}. Borland Pascal treats both as short, meaningless comments with anything in between as source code. This is an

Important construct allowing Borland Pascal functions that are invisible to Embedded Pascal. This is very useful if you want to use Borland Pascal or Delphi to develop your source code, possible in a simulated target environment. More on this later in this manual.

Examples:

{This is a comment)

(* and so is this *)

Curly braces may not be nested within curly braces, and (* *) may not be nested within (*. *). However, curly braces may nested within (* *) and vise versa, thus allowing entire sections of source code to be commented away, even if they contain comments.

Compiler Directives

A number of features of the Embedded Pascal compiler are controlled through compiler directives. A compiler directive is introduced as a comment with a special syntax which means that whenever a comment is allowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening brace immediately followed by a # sign immediately followed by one compiler directive letter. The syntax of the directive depends upon the directive selected. A full description of each of the compiler directives follow in the relevant sections.

Examples:

{#I INCLUDE.FIL}

Notice that no spaces are allowed before or after the # sign.

You may notice that this is similar to the way Borland Pascal uses directives. Borland Pascal however uses a dollar sign instead of the # sign. This means that Borland Pascal will see Embedded Pascal directives as comments and vice versa. Again, a handy feature is you intend developing in a mixed environment.

�

Program heading and program block

An Embedded Pascal program consists of a Link instruction, and a program heading followed by a program block. The program block is further divided into a declaration part, in which all objects local to the program are defined, and a statement part, which specifies the actions to be executed upon these objects. Each is described in detail in the following.

Link Instruction

	Normally, you would include a linker instruction before the program heading. The linker instruction specifies how the following source code is to be linked. One Pascal source file may have only one linker instruction. This linker instruction is optional.

Examples:

Link $1000,$8000		//link code from $1000 and data from $8000

Link CodeAdd,DataAdd		//link code and data relative to end of last code and data block

Link $1000,DataADD,$10000,ProgStart

The last example will link the code to run starting from address $1000, Data will be linked to start at the end of the last data block (last linker file)+1, The code will be loaded into ROM space at address $10000 and given the global load reference name of “ProgStart”

Program Heading

In Embedded Pascal, the program heading gives the program a name. As a program is really just a procedure, you may use the “procedure” keyword instead of the “program” keyword. This may be different in other Pascal implementations. Embedded Pascal REQUIRES a program heading.

Examples:

Program MyFirstProgram;

Procedure MyFirstProgram;

Declaration Part

The declaration part of a block declares all identifiers to be used within the statement part of that block (and possibly other blocks within it). The declaration part is divided into five different sections:

1) Label declaration part

2) Constant definition part

3) Type definition part

4) Variable declaration part

5) Procedure and function declaration part

Whereas standard Pascal specifies that each section may only occur zero or one time, and only in the above order, Embedded Pascal allows each of these sections to occur any number of times in any order in the declaration part.

Label Declaration Part

Any statement in a program may be prefixed with a label, enabling direct branching to that statement by a goto statement. A label consists of a label name followed by a colon. Before use, the label must be declared in a label declaration part. The reserved word label heads this part, and it is followed by a list of label identifiers separated by commas and terminated by a semicolon.

Example:

label A10, error, B999, Quit, _123;

Whereas standard Pascal limits labels to numbers of no more than 4 digits, Embedded Pascal allows identifiers to be used as labels. Numbers however are not allowed. This implies that if you would like to use a numeric label, you must prefix it with any alpha character or an underscore.

Constant Definition Part

The constant definition part introduces identifiers as synonyms for constant values. The reserved word const heads the constant definition part, and is followed by a list of constant assignments separated by semicolons. Each constant assignment consists of an identifier followed by an equal sign and a constant. Constants are either strlngs or numbers.

Example:

const

Limit = 255;

Max = 1024;

Span = Max-100;

PassWord = 'SESAM';

The following constants are predefined in Embedded Pascal which may be referenced without previous definition:

 Name:	Type and value:

 False	Boolean (the truth value false).

 True	Boolean (the truth value true).

 Nil	Zero, also zero value pointer.

Note the topic on typed constants further on.

Type Definition Part

A data type in Pascal may be either directly described in the variable declaration part or referenced by a type identifier. Several standard type identifiers are provided, and the programmer may create his own types through the use of the type definition. The reserved word type heads the type definition part, and it is followed by one or more type assignments separated by semicolons. Each type assignment consists of a type identifier followed by an equal sign and a type.

Example:

type

Number = Integer;

 Day = (mon, tues,wed, thur, fri,sat,sun);

 List = array[1. .10] of word;

More examples of type definitions are found in subsequent sections.

Variable Declaration Part

Every variable occurring in a program must be declared before use. The declaration must textually precede any use of the variable so that the variable is 'known' to the compiler when it is used.

A variable declaration consists of the reserved word var followed by one or more identifier(s), separated by commas, each followed by a colon and a type. This creates a new variable of the specified type and associates it with the specified identifier.

The 'scope' of this identifier is the block in which it is defined, and any block within that block. Note, however, that any such block within another block may define another variable using the same identifier. This variable is said to be local to the block in which it is declared (and any blocks within that block), and the variable declared on the outer level (the global variable) becomes inaccessible.

Example:

var

Result, Intermediate, SubTotal: Longint;

I, J, X, Y: Integer;

Accepted, Valid: Boolean;

	Buffer: array[0. .127] of Byte;

Procedure and Function Declaration Part

A procedure declaration serves to define a procedure within the current procedure. A procedure is activated from a procedure statement , and upon completion, program execution continues with the statement immediately following the calling statement.

A function declaration serves to define a program part which computes and returns a value. A function is activated when its designator is met as part of an expression.

Statement Part

The statement part is the last part of a block. It specifies the actions to be executed by the program. The statement part takes the form of a compound statement followed by a period or a semicolon. A compound statement consists of the reserved word begin, followed by a list of statements separated by semicolons, terminated by the reserved word end.

The final end in a program is followed by a “.” (dot) in traditional Pascal. In Embedded Pascal you may use the usual semicolon as well.

�

Expressions

Expressions are algorithmic constructs specifying rules for the computation of values. They consist of operands, variables, constants, and function designators combined by means of operators as defined in the following.

Operators

Operators fall into five categories, denoted by their order of precedence:

1) 	Unary minus (minus with one operand only).

2) 	Not operator.

3) 	Multiplying operators: *, /, div, mod, and, shl, and shr.

4) 	Adding operators: +, -, or, and xor.

	5) Relational operators: =, < > , > , < , <= ,>= , and in.

Sequences of operators of the same precedence are evaluated from left to right. Expressions within parentheses are evaluated first and independently of preceding or succeeding operators.

If both of the operands of the multiplying and adding operators are of type integer, then the result is of type Integer.

If one or both of the operands are of type word, then the result is of type word. If both operands are of type byte then the result will be of type byte.

Similar, if one or both operands are of type longint, the result will be of type longint.

Embedded Pascal will perform automatic type conversions on types byte,integer,word and longint as required.

Unary Minus

The unary minus denotes a negation of its operand which may be of Longint or Integer types.

Not Operator

The not operator negates (inverses) the logical value of its Boolean operand:

	not True = False

	not False = True

In Embedded Pascal, the “not” operator can be used to obtain the two’s complement (i.e. negate) its argument if the argument in of type byte,integer,longint or word.

MultipIying Operators

	Operator	Operation	Types	

	*	multiplication	Longint,Word,Integer,Byte

	/	division	Longint,Word,Integer,Byte

	div	division	Longint,Word,Integer,Byte

	mod	modulus	Longint,Word,Integer,Byte

	and	arithmetic and	Longint,Word,Integer,Byte

	and	logical and	Boolean

	shl	shift left	Longint,Word,Integer,Byte

	shr	shift right	Longint,Word,Integer,Byte

Examples:

	12 * 34	= 408

	123 / 4	= 30

	123 div 4	= 30

	12 mod 5	= 2

	True and False = False

	12 and 22	= 4

	2 shl 7	= 256

	256 shr 7	= 2

Adding Operators

	Operator	Operation	Types	

	+	addition	Longint,Word,Integer,Byte,String,Char

	-	subtraction	Longint,Word,Integer,Byte

	or	arithmetic or	Longint,Word,Integer,Byte

	or	logical or	Boolean

	xor	arithmetic xor	Longint,Word,Integer,Byte

	xor	logical xor	Boolean

Examples:

	 123+456	=579

		456-123	=333

		True or False =True

		12 or 22	=30

		True xor False =True

		12 xor 22	=26

Relational Operators

The relational operators work on all standard scalar types: Longint, Word, Integer, Boolean, Char, and Byte. Operands of type Longint, Word, Integer and Byte may be mixed. The type of the result is always Boolean, i.e. True or False.

	=	equal to

	<>	not equal to

	>	greater than

	<	less than

	>=	greater than or equal to

	<=	less than or equal to

Examples:

a = b true if a is equal to b.

a <> b true if a is not equal to b.

a > b true if a is greater than b.

a < b true if a is less than b.

a >= b true if a is greater than or equal to b.

a <= b true if a is less than or equal to b.

Function Designators

A function designator is a function identifier optionally followed by a parameter list, which is one or more variables or expressions separated by commas and enclosed in parentheses. The occurrence of a function designator causes the function with that name to be activated. If the function is not one of the pre-defined standard functions, it must be declared before activation.

Examples:

Convert(x);	{assume convert is a declared function returning a value}

Copy(s,4,10);	{copy is a built in function returning a substring from a string}

�

Statements

The statement part defines the action to be carried out by the program (or subprogram) as a sequence of statements; each specifying one part of the action. In this sense Pascal is a sequential programming language: statements are executed sequentially in time; never simultaneously. The statement part is enclosed by the reserved words begin and end and within it, statements are separated by semi-colons. Statements may be either simple or structured.

Simple Statements

Simple statements are statements which contain no other statements. These are the assignment statement, procedure statement, goto statement, and empty statement.

Assignment Statement

The most fundamental of all statements is the assignment statement. It is used to specify that a certain value is to be assigned to a certain variable. An assignment consists of a variable identifier followed by the assignment operator =: followed by an expression.

Assignment is possible to variables of any type as long as the variable (or the function) and the expression are of the same type or assignment compatible.

Examples:

Angle := Angle * 3;

AccessOK := False;

Entry := Answer = PassWord;

Result := (Entry * 13) shl 8;

Procedure Statement

A procedure statement serves to activate a previously defined userdefined procedure or a pre-defined standard procedure. The statement consists of a procedure identifier, optionally followed by a parameter list, which is a list of variables or expressions separated by commas and enclosed in parentheses. When the procedure statement is encountered during program execution, control is transferred to the named procedure, and the value (or the address) of possible parameters are transferred to the procedure. When the procedure finishes, program execution continues from the statement following the procedure statement.

Examples:

Find(Name,Address);

Sort(Address);

Uppercase(Text);

Goto Statement

A goto statement consists of the reserved word goto followed by a label identifier. It serves to transfer further processing to that point in the program text which is marked by the label. The following rules should be observed when using goto statements:

	1)	Before use, labels must be declared. The declaration takes place in a label declaration in the declaration part of the block in which the label is used.

	2)	The scope of a label is the block in which it is declared. It is thus not possible to jump into or out of procedures and functions.

Note: Embedded Pascal requires you to use valid identifiers as labels. Simple numeric labels as are permitted or required in some other implementations cannot be used.

There is no restriction to the number of labels you may define in a specific block.

Empty Statement

An 'empty' statement is a statement which consists of no symbols, and which has no effect. It may occur whenever the syntax of Pascal requires a statement but no action is to take place.

Examples:

begin end.

	while Answer <> ‘’ do;

	repeat until KeyPressed; {wait ror any key to be hit}

Structured Statements

Structured statements are constructs composed of other statements which are to be executed in sequence (compound statements), conditionally (conditional statements), or repeatedly (repetitive statements). The discussion of the with statement is deferred to later.

Compound Statement

A compound statement is used if more than one statement is to be executed in a situation where the Pascal syntax allows only one statement to be specified. It consists of any number of statements separated by semicolons and enclosed within the reserved words begin and end, and specifies that the component statements are to be executed in the sequence in which they are written.

Example:

if Small > Big then

begin

Tmp := Small;

Small := Big;

Big := Tmp;

end;

Conditional Statements

A conditional statement selects for execution a single one of its component statements.

If Statement

The if statement specifies that a statement be executed only if a certain condition (Boolean expression) is true. If it is false, then either no statement or the statement following the reserved word else is to be executed. Notice that else must not be preceded by a semicolon.

The syntactic ambiguity arising from the construct:

if	expri then if expr2 then stmtl

else

stmt2

is resolved by interpreting the construct as follows:

if	expri then

begin

if	expr2 then

stmtl

else

stmt2

end

The else-clause part belongs generally to the last if statement which has no else part.

Examples:

if Interest > 25 then Usury := True

else

TakeLoan := OK;

if (Entry < 0) or (Entry > 100) then

begin

Write('Range is 1 to 100, please re-enter: '); Read(Entry);

end;

Case Statement

The case statement consists of an expression (the selector) and a list of statements, each preceded by a case label of the same type as the selector. It specifies that the one statement be executed whose case Iabel is equal to the current value of the selector. If none of the case labels contain the value of the selector, then either no statement is executed, or, optionally, the statements following the reserved word else are executed. The else clause is an expansion of standard Pascal.

A case label consists of one to many constants or subranges separated by commas followed by a colon. A subrange is written as two constants separated by the subrange delimiter '. .'. The type of the constants must be the same as the type of the selector. The statement following the case label is executed if the value of the selector equals one of the constants or if it lies within one of the subranges.

In the interest of code efficiency on 8 bit processors, the case label may be any 8 bit data type such as byte or char. Words, Integers and Longints may not be used.

Embedded Pascal will compile the case statement in one of two ways:

If the case statement contains subranges or the constant value of each successive case label is in a non-ordered form, code will be generated that will test each case label in turn until a match is found (if any). This is the “traditional” way of evaluating a case statement.

If the case statement contains no subranges and each case label is the natural successor of its predecessor, Embedded Pascal will compile a “jump table”. This option may include the “else” condition.

	If you plan to write a large case statement, consider a case statement as described under option 2. The generated code will execute much faster and you will also generate a slightly less code.

Examples:

case Operator of

‘+’: Result:= Answer + Result;

‘-‘: Result := Answer - Result;

‘*’: Result := Answer * Result;

’/’: Result := Answer / Result;

end;

case Year of

22..39: begin

 Time(PreWorldWar2);

 Writeln(‘The world at peace...');

	 end;

 46.. Max:	

	 begin

 Time(PostWorldWar2);

 Writeln(‘Building a new world.');

 end;

else

 begin

 Time(WorldWar2);

 Writeln(‘We are at war');

 end;

end;

The above example will result in traditional, relatively slow code as the case variable has to be checked against each case label. The example below will result in a fast “jump table”. The case variable can be used as index into the jump table.

Case Mode of

10 : Result:=’Start’;

11: Result:=’Prime’;

12: Result:=’Primed’;

13,14,15: Result:=’Waiting’;

16: Result:=’Trigger’;

17:Result:=’Fire’;

18:Result:=’Finished’;

else Result:=’Invalid’; end;

Repetitive Statements

Repetitive statements specify that certain statements are to be executed repeatedly. If the number of repetitions is known before the repetitions are started, the for statement is the appropriate construct to express this situation. Otherwise the while or the repeat statement should be used.

For Statement

The for statement indicates that the component statement is to be repeatedly executed while a progression of values is assigned to a variable which is called the control variable. The progression can be ascending: to or descending: downto the final value.

The control variable, the initial value, and the final value must all be of the same type. Valid types are byte,word and integer. Longints cannot be used as control variables.

If the initial value is greater than the final value when using the to clause, or if the initial value is less than the final value when using the downto clause, the component statement is not executed at all.

Examples:

for I := 2 to 100 do if A[I] > Max then Max :=A[I];

for I := 1 to NoOfLines do

begin

Readln(Line);

If length(line)=0 then break;

if Length(Line) < Limit then

ShortLines := ShortLines + 1;

else

LongLines := LongLines + 1;

 If Line<>’END’ then continue;

 X:=I;

end;

You can re-assign values to the control variable inside the for-loop in order to achieve some special effect. Note however that other Pascal implementations may not allow this. You can leave a for loop prematurely by setting the value of the control variable to its final value, you can use a goto statement to jump out of the for loop or you can use the “break” statement. Note that the break statement does not exist in many Pascal implementations. Similar, you can use the “continue” statement to transfer to the beginning of the for loop.

Upon normal completion of a for statement, the control variable equals the final value. If the for loop was not executed at all, the control variable contains the initial value. This may differ in other Pascal Implementations.

It is recommended that you use the while or repeat statement instead of the for loop. Both while and repeat statement are more code efficient and carry less overhead. Inspect the code generated and decide for yourself.

In Embedded Pascal the for loop final value is stored in a transparently created static variable of same type as the loop control variable. Thus, if you use a word as control variable, Embedded Pascal will reserve 4 bytes for the for loop in data memory: the control variable itself and the target value. Other implementations may store this value on the stack. As this can complicate inline assembler statements as well as the goto statement, it was decided to rather create a static variable for this purpose. Embedded Pascal usage of the stack should always be simple and as little as possible as this makes for easy programming for your assembler routines. You can for example use an inline asm statement to jump straight out of a for loop into another such loop !

While statement

The expression controlling the repetition must be of type Boolean. The statement is repeatedly executed as long as expression is True. If its value is false at the beginning, the statement is not executed at all.

Examples:

while Delay > 0 do dec(Delay);

while ThisMonth do

begin

ThisMonth := CurMonth = SampleMonth; Process;

{process this sample by the Process procedure}

end;

Repeat Statement

The expression controlling the repetition must be of type Boolean. The sequence of statements between the reserved words repeat and until are executed repeatedly until the expression becomes true. As opposed to the while statement, the repeat statement is always executed at least once, as evaluation at the condition takes place at the end of the loop.

Example:

repeat

Write('Delete this item? (Y/N)');

Read(Answer);

until UpCase(Answer) in ['Y', 'N'];

�

Scalar and subrange types

The basic data types of Pascal are the scalar types. Scalar types Constitute a finite and linear ordered set of values.

Scalar Type

Apart from the standard scalar types (Longint, Integer, Word, Boolean, Char; and Byte), Pascal supports user defined scalar types, also called declared scalar types. The definition of a scalar type specifies, in order, all of Its possible values. The values of the new type will be represented by identifiers, which will be the constants of the new type.

Examples:

type

	Operator	=	(Plus,Minus,Multi,Divlde);

	Day	=	(Mon,Tue,Wed,Thur,Fri,Sat,Sun);

	Month	=	(Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec);

	Card	=	(Club,Diamond,Heart,Spades);

Embedded Pascal uses a simplified view of the Scalar Type. It is comparable with the enumerated type in the C language. In the first example, the type Operator is nothing else but a type byte. All following values are enumerated starting from 0. Effectively Plus is a constant with the value 0, Minus a 1, Multi a 2 and so on. While standard Pascal will enforce the usage of these constants with the type “operator”, Embedded Pascal will let you use these constants freely.

The use of defined scalar types is strongly recommended as it greatly improves the readability of programs.

Subrange Type

Embedded Pascal does not support subranges as defined in standard Pascal.

�

Type Conversion

The Ord function may be used to convert scalar types into values of type integer. Standard Pascal does not provide a way to reverse this process, i.e. a way of converting an integer into a scalar value.

Embedded Pascal provides “Type Casting” as can be found in most of the Pascal compilers today. This is done by simply using the type identifier as “function” name, The single parameter in this “function call” is a variable of type A that you would like the compiler to view as a variable of type B (the type identifier used in the “function call”).

Note: Type casts are only possible between types that occupy the same number of bytes in memory.

Examples:

Type

 RecordA= record

 A,b,c: word;

 End;

 RecordA= record

 X: longint;

 Y: word;

 End;

Var

 A: RecordA;

 B: RecordB;

 C: char;

 D: byte;

Begin

 A:=RecordA(B);

 RecordA(B):=A;

 D:=byte(C);

 C:=char(D);

End.

Range Checking

Embedded Pascal performs no range checking (except in some special cases like memory moves). This results in the most compact code possible.

You should consider using Borlands Delphi as primary development vehicle, creating a complete virtual simulation of the embedded application you are developing. In this case you can use all of Delphi’s powerful debugging facilities. You can keep the code of your embedded application completely compatible between Delphi and Embedded Pascal. Typically, you will only create a few low level assembler routines in addition to the Pascal code which should be easy to simulate in Delphi.

This concept is the sole reason why Embedded Pascal was created.

�

String type

Embedded Pascal offers the convenience of string types for processing of character strings i.e. sequences of characters. String types are structured types and are in many ways similar to array types. In Embedded Pascal, a string is the exact equivalent of an array of char and such an array may be treated as a string.

Embedded Pascal uses the FIRST character in a string as a length indicator with the remainder of the string following. This is compatible with most Pascal string implementations but differs from C, which uses a zero byte as string delimiter.

In short, the Pascal string results in a better performance since the length of a string is always known without having to scan the string. The Pascal string is also a convenient dynamic storage medium for data other than characters as there is no restriction on the value of a character that can be placed inside the string. C strings on the other hand may be of indefinite length while Pascal strings are restricted to a maximum length of 255 characters.

String Type Definition

The definition of a string type must specify the maximum number of characters it can contain, i.e. the maximum length of strings of that type. The definition consists of the reserved word string followed by the maximum length enclosed in square brackets. The length is specified by an integer constant in the range 0 through 255. Notice that strings do not have a default length; the length must always be specified.

Example:

type

	Username	string[30];

	ScreenLine string[80];

String variables occupy the defined maximum length in memory plus one byte which contains the current length of the variable. The individual characters within a string are indexed from 1 through the length of the string.

String Expressions

Strings are manipulated by the use of string expressions. String expressions consist of string constants, string variables, function designators, and operators.

The plus-sign may be used to concatenate strings. The Concat function available in some Pascal implementations does the same thing but is not implemented in Embedded Pascal since the + operator is often more convenient.

The result of string expressions cannot provide a string larger than 255 characters in length, also, in string assignments, the assignment target will never receive a string larger than the size of the target permits.

Example:

'Embedded ‘ + 'Pascal ' + ‘is ‘+ ‘fun…’

	'123' + ' . + '456’

	'A ' + 'B' + ' C ' + 'D '

The relational operators =, < >, >, <, > =, and < = are lower in precedence than the concatenation operator. When applied to string operands, the result is a Boolean value (True or False). When comparing two strings, single characters are compared from the left to the right according to their ASCII values. If the strings are of different length, but equal up to and including the last character of the shortest string, then the shortest string is considered the smaller. Strings are equal only if their lengths as well as their contents are identical.

Examples:

	'A' < 'B'	is true

	'A' > 'b'	is false

	'2' < '12'	is false

	'PASCAL' = 'PASCAL'	is true

	'PASCAL' = 'pascal'	is false

	'Pascal Compiler' < 'Pascal compiler'	is true

String Assignment

The assignment operator is used to assign the value of a string expression to a string variable.

Example:

Age := 'twenty'

Line := 'Many happy returns on your ' + Age + ' birthday’

If the maximum length of a string variable is exceeded (by assigning too many characters to the variable), the exceeding characters are truncated. E.g., if the variable Age above was declared to be of type string[5], then after the assignment the variable will only contain the five leftmost characters: 'twent'.

String Procedures

The following standard string procedures are available in Embedded Pascal:

Delete

Syntax:	Delete (St, Pos, Num);

Delete removes a substring containing Num characters from St starting at position Pos. St is a string variable and both Pos and Num are integer expressions. If Pos is greater than Length (St), no characters are removed. If an attempt is made to delete characters beyond the end of the string (i.e. Pos + Num exceeds the length of the string), only characters within the string are deleted. If Pos is outside the range 1..255, the string is left unchanged.

If St has the value 'ABCDEFG' then:

Delete(St,2,4) will give Stthe value 'AFG'.

Delete(St,2,10) will give St the value 'A'.

Insert

Syntax: Insert (ObI, Target, Pos);

Insert inserts the string Obj into the string Target at the position Pos. Obj is a string expression, Target is a string variable, and Pos is an integer expression. If Pos is greater than Length(Target), then Obj is concatenated to Target. If the result is longer than the maximum length of Target, then excess characters will be truncated and Target will only contain the leftmost characters. If Pos is outside the range 1..255, Target is left unchanged.

If St has the value ‘ABCDEFG' then Insert('XX' ,St,3) will give St the value 'ABXXCDEFG'

The string procedures Str and Val which are found in many Pascal implementations have been replaced with the more convenient string functions IntToStr,IntToHex, StrToInt and StrToIntDef, found in Borlands Delphi.

String Functions

The following standard string functions are available in Embedded Pascal:

Copy

Syntax:	Copy (St, Pos, Num);

Copy returns a substring containing Num characters from St starting at position Pos. St is a string expression and both Pos and Num are integer expressions. If Pos exceeds the length of the string, the empty string is returned. If an attempt is made to get characters beyond the end of the string (i.e. Pos + Num exceeds the length of the string), only the characters within the string are returned. If Pos is outside the range 1. .255, an empty string is returned.

If St has the value 'ABCDEFG' then:

Copy(St , 3, 2) returns the value 'CD'

Copy(St , 4, 10) returns the value 'DEFG'

Copy(St , 4, 2) returns the value 'DE'

Length

Syntax:	Length (St);

Returns the length of the string expression St, i.e. the number of characters in St. The type of the result is byte.

If St has the value '123456789' then:

Length (St) returns the value 9

Note: You may also access the length byte of a string directly: St[0] is of type char. Use a typecast or the Ord() function to use the char value as a byte.

Pos

Syntax:	Pos (Obj, Target);

The Pos function scans the string Target to find the first occurrence of Obj within Target Ob! and Target are string expressions, and the type of the result is byte. The result is a byte denoting the position within Target of the first character of the matched pattern. The position of the first character in a string is 1. If the pattern is not found, Pos returns 0.

If St has the value 'ABCDEFG' then

Pos('DE' ,St) returns the value 4

Pos('H' St) returns the value 0

Strings and Characters

String types and the standard scalar type Char are compatible. Thus, whenever a string value is expected, a char value may be specified instead and vice versa. Furthermore, strings and characters may be mixed in expressions.

Characters (type char) may be assigned string constants of length one only.

Example:

Var

 Ch: char;

Begin

 Ch:=’A’;

End;

The characters of a string variable may be accessed individually through string indexing. This is achieved by appending an index expression enclosed in square brackets, to the string variable.

Examples:

Buffer[5];

Line[Length(Line)];

Ord(Line[O]);

As the first character of the string (at index 0) contains the length of the string, Length(String) is the same as 0rd(String[0]). If assignment is made to the length indicator, it is the responsibility of the programmer to check that it is less than the maximum length of the string variable.

It is possible to index a string beyond its current dynamic length. The characters thus read are random, and assignments beyond the current length will not affect the actual value of the string variable.

IntToStr and IntToHex

	Syntax: IntToStr(value) or IntToHex(value)

These two functions return a string representing the numeric value in either decimal or hexadecimal notation. In case of decimal (IntToStr), the result string contains the value with leading zeroes removed. The Hexadecimal result (IntToHex) depends on the type of value. If the type is byte, then 2 hexadecimal digits are returned. Similar, an integer or word returns 4, the longint returns 8 hexadecimal digits.

These functions replace the traditional Pascal “Str” procedure.

StrToInt and StrToIntDef

	Syntax: StrToInt(string) or StrToIntDef(string,value)

These two functions convert a string representation of a valid decimal number (which may be preceded with either + or -) to a longint. The string may not contain blanks or any other character not found with a valid integer number. StrToIntDef will return the value in “value” if the conversion fails because of illegal characters or an empty string.

	These two functions replace the traditional Pascal “Val” procedure.

Type String[0]

In Embedded Pascal the type string[0] has special meaning. This type can be used as type in “typed string constants” to save on memory space.

Examples:

Type

 TStringConstant= string[0];

Const

 MyConstant: TstringConstant=’Hello World’;

 AnotherStringConstant: TstringConstant=’How are you this morning’;

String constants are created in code space and are therefore ROMable. The above use of the string[0] type ensures that the two string constants occupy no more code space as is required. If, for example, TstringConstant would be defined as String[50], both strings would occupy 51 bytes of code space each (50 plus length byte), regardless of the length of the acual string content.

�

Array type

An array is a structured type consisting of a fixed number of components which are all of the same type, called the component type or the base type. Each component can be explicitly accessed by indices into the array. Indices are expressions of any scalar type placed in square brackets suffixed to the array identifier, and their type is called the index type.

Array Definition

The definition of an array consists of the the reserved word array followed by the index type, enclosed in square brackets, followed by the reserved word of followed by the component type.

Examples:

type

Day = (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

Var

	WorkHour	array[1. .8] of Integer;

	Week	array[1..7] of Day;

type

	 Players	= (Playerl,Player2,Player3,Player4);

	 Hand	= (One,Two,Pair,TwoPair,Three,Straight,

		 Flush.FullHouse,Four,5traightFlush);

	 LegalBid	= 1. .200;

	 Bid	= array[Players] of LegalBid;

	Var

	 Player	 :array[Players] of Hand;

	 Pot	 :Bid;

An array component is accessed by suffixing an index enclosed in square brackets to the array variable identifier:

	Player[Player3]	:= FullHouse;

	Pot[Player3] :=	100;

	Player[Player4]	:= Flush;

	Pot[Player4] :=	50;

As assignment is allowed between any two variables of identical type, entire arrays can be copied with a single assignment statement.

Multidimensional Arrays

The component type of an array may be any data type, i.e. the component type may be another array. Such a structure is called a multidimensional array.

Example:

type

Card = (Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten,Knight,Queen,King,Ace);

 Suit = (Hearts,Spade,Clubs,Diamonds);

 AllCards = array[Suit] of array[l. .13] of Card;

Var

Deck:	AllCards;

A multi-dimensional array may be defined more conveniently by specifying the multiple indices thus:

Type.

AllCards - array[Suit,1. .13] of Card;

A similar abbreviation may be used when selecting an array component:

Deck[Hearts,10] is equivalent to Deck[Hearts][10]

It is, of course, possible to define multidimensional arrays in terms of previously defined array types.

Example:

type

	Pupils	= string[20];

	Class	= array[l..30] of Pupils;

	School	= array[l..100] of Class;

Var

	J,P,Vacant	:	Integer

	ClassA,

	ClassB	:	Class;

	NewTownSchool :	School;

After these definitions, all of the following assignments are legal:

ClassA[J]='Peter';

NewTownSchool[5][21] :='Peter Brown';

NewTownSchool [8,J] : =NewTownSchoo1 [7,J]; (pupil no. J changed class)

ClassA[Vacant] :=ClassB[P]; (pupil no. P changes class and number)

Character Arrays

Character arrays are arrays with one index and components of the standard scalar type Char. Character arrays may be thought of as strings with a constant length.

In Embedded Pascal, character arrays may participate in string expressions, in which case the array is converted into a string of the length of the array. Thus, arrays may be compared and manipulated in the same way as strings, and string constants may be assigned to character arrays. String variables and values computed from string expressions can be assigned to character arrays.

Predefined Arrays

Some Pascal implementations offer two predefined arrays of type Byte, called Mem and Port, which are used to access CPU memory and data ports.

Embedded Pascal does NOT provide these arrays.

Embedded Pascal provides a standard procedure Out(port,value) and a standard function Inp(port) instead of the port array. You will find Out() and Inp() much more convenient when emulating real I/O ports using Borlands Delphi or another PC based Pascal compiler.

In order to access memory directly, simply declare a pointer to a type byte, word or any type you like. By assigning a memory location to the pointer you have free access to memory. Keep in mind also that on 8-Bit CPU implementations of Embedded Pascal a pointer is fully compatible with the type word.

Tip: you can define yourself a “memory array” as follows:

Type

 TMemAsBytes: array[0..$FFFF] of byte;

 TMemAsWords: array[0..$7FFF] of word;

 TBytePointer: ^byte;

Var

 Mem: TMemAsBytes absolute 0;

 MemW: TmemAsWords abslute 0;

 BytePointer: TBytePointer;

Begin

 BytePointer:=$2000; // in Embedded Pascal this is allowed ! (check your Pascal for compatibility)

End;

�

Record type	

A record is a structure consisting of a fixed number of components, called fields. Fields may be of different type and each field is given a name the field identifier, which is used to select it.

Record Definition

The definition of a record type consists of the reserved word record succeeded by a field list and terminated by the reserved word end. The field list is a sequence of record sections separated by semi-colons, each consisting of one or more identifiers separated by commas, followed by a colon and either a type identifier or a type descriptor Each record section thus specifies the identifier and type of one or more fields

Example:

type

	Days0fMonth	=	1. 31;

	Date =		record

Day: DaysofMonth;

	Month: (Jan,Feb,Mar,Apr,May,Jun,

July,Aug,Sep,Oct,Nov,Dec);

Year: word;

	 end;

Var

 Birth: Date;

 WorkDay : array[1..5] of date;

Day, Month and Year are field identifiers. A field identifier must be unique only within the record in which it is defined. A field is referenced by the variable identifier and the field identifier separated by a period.

Examples:

	Birth.Month = Jun;

	Birth.Year = 1950;

 WorkDay[Current] = WorkDay[Current-1];

Note that, similar to array types, assignment is allowed between entire records of identical types. As record components may be of any type, constructs like the following record of records of records are possible:

type

	Name	= record

FamilyName: string[32],

ChristianNames: array[1. .3] of string[16];

	End;

	Rate	= record

NormalRate, OverTime,

NightTime, Weekend: Integer;

	End;

	Date	= record

Day: byte;

Month: Jan,Feb,Mar,Apr,May,Jun,

	July,Aug,Sep,Oct,Nov,Dec;

Year: word;

	End;

Person = record

 ID: Name;

 Time: Date;

	End;

	Wages	= record

Individual: Person;

Cost Rate;

	End;

Var

 Salary, Fee: Wages;

Assuming these definitions, the following assignments are legal:

Salary:= Fee;

Salary.Cost.Overtime := 950;

Salary.Individual.Time := Fee.Individual.Time;

	Salary.Individual.ID.FamilyName := Smith

�

With Statement

The use of records as describes above does sometimes result in rather lengthy statements; it would often be easier if we could access individual fields in a record as if they were simple variables. This is the function of the with statement: it 'opens up' a record so that field identifiers may be used as variable identifiers.

A with statement consists of the reserved word with followed by a list of record variables separated by commas followed by the reserved word do and finally a statement.

Within a with statement, a field is designated only by its field identifier, i.e. without the record variable identifier.

with Salary do

begin

Individual := NewEmployee;

 Cost := StandardRates;

end;

Records may be nested within with statements, i.e. records of records may be 'opened' as shown here:

with Salary, Individual, ID do

begin

FamilyName := 'Smith';

 ChristianNames[1] := 'James';

End;

This is equivalent to:

with Salary do

 with Individual do

 with ID do

The maximum 'depth' of this nesting of with sentences, i.e. the maximum number of records which may be 'opened' within one block is 10;

�

Variant Records

Embedded Pascal currently does not support variant records, i.e. records of same type with variant field types.

However, you can easily achieve the same effect by following the principle in the following example:

Type

 Tvariant1 = record

 V: longint;

 End;

 Tvariant2 = record

	 Vlo: word;

	 	 Vhi: word;

	 End;

Var

 VasLong = Tvariant1;

 VasWords = Tvariant2; absolute VasLong;

Now, variables VasLong and VasWords occupy the same locations in memory. If you use VasWords you can easily access the low and high word of the longint you put into VasLong !

(Note that Embedded Pascal provides functions LoWord and HiWord to do just that !)

The only thing you have to be aware of when using this method of creating “variant records” is that the records must all be of the same length (i.e. occupy the same amount of memory) to avoid difficult to trace memory overwrite problems. Pad shorter records with dummy variables if necessary.	

Set type

Standard Pascal defines type “set type”. This type contains items of related objects. Operators and expressions are used to manipulate objects within sets.

Embedded Pascal does not implement the “Set type” fully. In short, Embedded Pascal implements constant sets. Embedded Pascal’s constant sets consist of a series of byte sized values or sub ranges enclosed in square brackets and separated by commas.

The only set operator available is the “in” operator and the result is boolean.

Examples

Ch:=’A’;

If Ch in [‘A’,’B’,’C’] then Ch:=’1’; //true since ‘A’ is contained in the constant set.

If Ch in [‘a’..’z’,’A’..’Z’,’0’..’9’] then AlphaNumeric:=true;

Constants sets may not be named and must follow the “in” operator as in the above examples.

Embedded Pascal, for efficiency reasons, only allows bytes or chars as constants within the constant set.

�

Typed constants

Typed constants are a useful specialty. A typed constant may be used exactly like a variable of the same type. Typed constants may thus be used as initialized variables, because the value of a typed constant is defined, whereas the value of a variable is undefined until an assignment is made. Care should be taken, of course, not to assign values to typed constants whose values are actually meant to be constant.

Typed constants are defined like untyped constants (see page 48), except that the definition specifies not only the value of the constant but also the type. In the definition the typed constant identifier is succeeded by a colon and a type identifier, which is then followed by an equal sign and the actual constant.

Typed constants are Pascal’s equivalent of C’s initialized variables.

Unstructured Typed Constants

An unstructured typed constant is a constant defined as one of the scalar types:

const

NumberOfCars:	Integer = 1267;

Interest:	Longint = 1267;

Heading:	string[7] = 'SECTION';

Contrary to untyped constants, a typed constant may be used in place of a variable as a variable parameter to a procedure or a function. As a typed constant is actually a variable with a constant value, it cannot be used in the definition of other constants or types. Thus, as Mm and Max are typed constants, the following construct is illegal:

const

Min:	Integer = 0;

Max:	Integer = 50;

type

 Range: array[Min..Max] of integer;

Structured Typed Constants

Structured constants comprise array constants and record constants. They are often used to provide initialized tables and sets for tests, conversions, mapping functions, etc. The following sections describe each type in detail.

Array Constants

The definition of an array constant consists of the constant identifier succeeded by a colon and the type identifier of a previously defined array type followed by an equal sign and the constant value expressed as a set of constants separated by commas and enclosed in parentheses.

Examples:

type

Status: array[0..2] of string[7];

const

Stat: Status = ('active' 'passive', 'waiting');

The example defines the array constants Stat, which may be used to convert values of the scalar type Status into their corresponding string representations. The components of Stat are:

The following boolean comparisons would return true:

Stat[0] = 'active'

Stat[1] = 'passive'

Stat[2] = 'waiting'

The component type of an array constant may include Pointer types. Character array constants (strings) must be specified as strings. Thus, the definition:

const

Digits:	array[0. .9] of Char = ‘0123456789’;

Is equivalent to:

const

 Digits:	string[9] = '0123456789';

Multi-dimensional Array Constants

Multi-dimensional array constants are defined by enclosing the constants of each dimension in separate sets of parentheses, separated by commas. The innermost constants correspond to the rightmost dimensions.

Example:

type

Cube = array[0..1,0.. 1,0..1] of integer;

const

 Maze:Cube = (((0,1), (2,3))), (4,5),(6,7)));

Record Constants

The definition of a record constant consists of the constant identifier succeeded by a colon and the type identifier of a previously defined record type followed by an equal sign and the constant value expressed as a list of field constants separated by semi-colons and enclosed in parentheses.

Example:

type

	 Point	-	record

			 X,Y Z integer,

			end,

	const

	 APoint : Point		 = (X: 0;

			 Y: 2;

			 Z: 4);

The field constants must be specified in the same order as they appear in the definition of the record type. If a record contains fields of pointer types then constants of that record type must be assigned addresses using the @ or addr() functions or they can be simply assigned a word constant.

Write and Read

Standard Pascal defines the procedures Write and Writeln as well as Read and Readln. These are very powerful implementations but are tied directly to an underlying operating system for I/O.

Embedded Pascal does not force you to run its code on any particular platform or operating system, in fact you may not have any such system at all in your embedded application.

Embedded Pascal therefor leaves it up to you to handle any I/O in whatever fashion you require it. You may very well create a writeln procedure yourself and you will find that it probably is very simple. Your writeln for example may send a string to a LCD Display, while a Read returns a value read from some keyboard.

Embedded Pascal is however not excluded from running as a program under an operating system. In fact, one of the examples included with the compiler implements a short program that will happily run under CP/M or an equivalent operating system. The example shows how to use Embedded Pascal’s inline assembler statements to interface to the BDOS.

Pointer types

Variables discussed up to now have been static, i.e. their form and size is pre-determined and they exist throughout the entire execution of the block in which they are declared. Programs, however, frequently need the use of a data structure which varies in form and size during execution. Dynamic variables serve this purpose as they are generated as the need arises and may be discarded after use.

Such dynamic variables are not declared in an explicit variable declaration like static variables. and they cannot be referenced directly by identifiers. Instead, a special variable containing the memory address of the variable is used to point to the variable. This special variable is called a pointer variable.

	 Defining a Pointer Variable

A pointer type is defined by the pointer symbol ^ (Caret) succeeded by the type identifier of the dynamic variables which may be referenced by pointer variables of this type.

In many Pascal implementations you can refer to a pointer type not yet defined. The reason for this is that you might want to refer to a pointer to a record within that very record type definition.

The following shows how to declare a record with associated pointers.

The type PersonPointer is is declared as a pointer to variables of type PersonRecord.

type

PersonPointer = ^PersonRecord;

PersonRecord = record

	Name:	string[50];

	Job:	string[50];

	Next:	PersonPointer;

 end;

Var

FirstPerson, LastPerson, NewPerson: PersonPointer;

The variables FirstPerson, LastPerson and NewPerson are thus pointer variables which can point at records of type PersonRecord. As shown above, the type identifier in a pointer type definition may refer to an identifier which is not yet defined.

Note: Pointer type definitions to a type not yet defined are restricted in scope to the same type definition block.

Allocating Variables (using the built in procedure “New”)

Before it makes any sense to use any of these pointer variables we must, of course, have some variables to point at. New variables of any type are allocated with the standard procedure New. The procedure has one parameter which must be a pointer to variables of the type we want to create.

You cannot use the generic type “pointer” with new as “pointer” because it is untyped.

A new variable of type PersonRecord can thus be created by the statement:

New(FirstPerson)

which has the effect of having FirstPerson point at a dynamically allocated record of type PersonRecord.

On 8-bit implementations of Embedded Pascal a pointer variable is directly compatible with the type “word”, thus all operations that can be performed on a “word” may be performed on a pointer (assignments and arithmetic). Note that this is not necessarily the case with other Pascal implementations.

The pointer value nil is compatible with all pointer types. nil points to no dynamic variable, and may be assigned to pointer variables to indicate the absence of a usable pointer. nil may also be used in comparisons. The value nil corresponds not surprisingly to the value 0.

Variables created by the standard procedure New are stored in a stack-like structure called the heap. The Embedded Pascal system controls the heap by maintaining a heap pointer which at the beginning of a program must be initialized to the address of a free area in memory. Embedded Pascal does not attempt to initialize the heap pointer. This is your prerogative as only you know the structure of the memory in your embedded application and where best to locate the heap. Of coarse, if you do not use the heap and the “New” procedure, you do not have to worry about the heap pointer. The run time library of Embedded Pascal does not use the heap.

On each call to New, the heap pointer is moved towards the top of free memory the number of bytes corresponding to the size of the new dynamic variable.

Mark and Release

When a dynamic variable is no longer required by the program, the standard procedures Mark and Release are used to reclaim the memory allocated to these variables. The Mark procedure assigns the value of the heap pointer to a variable. The syntax of a call to Mark is:

Mark(Var);

This corresponds to:

Var:=HeapPtr;

where Var is a pointer, word or integer variable. The Release procedure sets the heap pointer to the address contained in its argument. The syntax is:

Release(Var);

This corresponds to:

HeapPtr:=Var;

where Var is a pointer variable, previously set by Mark. Release thus discards all dynamic variables above this address, and cannot release the space used by variables in the middle of the heap.

Most modern Pascal implementations implement a different scheme using the procedure “dispose”. This allows to discard any dynamic variable regardless of its location on the heap. Embedded Pascal does not provide the “dispose” procedure for the following reasons:

Mark and Release are simple and elegant as well as very efficient. They however do require a programmer to plan the heap usage somewhat better as is normally the case with “New” and “Dispose”. One often overlooked fact is that “New” and “Dispose” can lead to heap fragmentation which can lead to loss of limited ram memory space on an Embedded system.

However, as you have access to the heap pointer, you can implement your own heap memory allocation scheme even using your implementation of “dispose”. You may want to implement the heap as a linked list which will allow the de-allocation of an element on the heap.

The standard function MemAvail is not available in Embedded Pascal for perhaps obvious reasons. You as the programmer are the only person that can calculate the amount of free heapspace by subtracting the value of the heap pointer from the largest available memory location that you allow.

Using Pointers

Supposing we have used the New procedure to create a series of records of type PersonRecord (as in the example on the following page) and that the field Next in each record points at the next PersonRecord created. then the following statements will go through the list and write the contents of each record (FirstPerson points to the first person in the list, you have created a “Writeln” procedure to output a string to some available character output device):

while FirstPerson <> nil do

 with FirstPerson^ do

 begin

 Writeln(Name + ‘ is a ‘ +Job); FirstPerson := Next:

 end:

The following demonstrates the use of pointers to maintain a list of names and related job desires. Names and job desires will be read in until a blank name is entered. Then the entire list is printed. Finally, the memory used by the list is released for other use. The pointer variable HeapTop is used only for the purpose of recording and storing the initial value of the heap pointer. Its definition as a Integer (pointer to integer) is thus totally arbitrary.

procedure Jobs;

type

PersonPointer - ^ PersonRecord;

PersonRecord - record

Name:	string[50];

Job:	string[50];

Next:	PersonPointer;

	end;

Var

HeapTop: ^Integer;

FirstPerson, LastPerson, NewPerson: PersonPointer;

Name: string[50];

begin

FirstPerson := nil;

Mark(HeapTop);

repeat

Write('Enter name:’);

Readln(Name);

if Name <> '' then

begin

New(NewPerson);

NewPerson^.Name := Name;

Write('Enter profession: ');

Readln(NewPerson^.Job);

Writeln(‘’);

if FirstPerson = nil then FirstPerson := NewPerson else

begin

LastPerson^.Next := NewPerson;

LastPerson := NewPerson; LastPerson Next := nil;

 End;

end;

until Name=''; Writeln();

while FirstPerson <> nil do

 with FirstPerson^ do

 begin

Writeln(Name + ’ is a ‘ + Job’);

FirstPerson := Next;

 end;

 Release (HeapTop);

end.

GetMem

The standard procedure GetMem is used to allocate space on the heap. Unlike New, which allocates as much space as required by the type pointed to by its argument, GetMem allows the programmer to control the amount of space allocated. GetMem is called with two parameters:

GetMem{PVar, I);

where PVar is any pointer variable, and I is an integer expression giving the number of bytes to be allocated.

FreeMem

The standard procedure “Freemem” is not implemented in Embedded Pascal. “Freemem” works only in combination with heap that allows “holes”. Embedded Pascal’s heap management using Mark and Release is not compatible with “FreeMem”.

SizeOf(Var)

The Sizeof function returns the size of the variable in the Expression Var in bytes. This function is usefull in connection with the Getmem and Freemem procedures.

Note: Embedded Pascal allows you to use the “Sizeof” function in constant and typed constant expressions:

Const

 SizeOfAVariable: word = SizeOf(Avariable);

@Var and addr(Var)

These two functions are exactly identical. They return the physical address of a variable, typed constant or procedure/function.

Note: Embedded Pascal allows you to use these functions in constant and typed constant expressions:

Const

 AddressOfVariable: pointer = @Avariable;

 or

AddressOfVariable: pointer = addr(Avariable);

Hints

Note that no range checking is done on pointers. It is the responsibility of the programmer to ensure that a pointer points to a legal address.

Embedded Pascal’s implementation of pointers attempts to merge the worlds of high level Pascal programming and that of the assembler programmer. For this reason, pointers may be used in much the same fashion that an assembler programmer would use them. For example, the following code is valid in Embedded Pascal but probably not in other Pascal implementations:

Var

 P: ^word;

 W,N: word;

Begin

 P:=@W+10; //set P to point to the address of W plus an offset of 10 bytes

 For n:=0 to 9 do

 Begin

 P^:=n;

 Inc(P); //increment the pointer

 End;

End;

The heap

On startup of an Embedded Pascal program that uses dynamic variables, you must initialize the heap pointer to point to the first free location in an area of RAM that you want to set aside for the heap.

The heap behaves much like a common stack. In Embedded Pascal the heap grows towards high memory.

Embedded Pascal allows free access to a word variable called “HeapPtr”. You can read and write this variable as you please. “HeapPtr” is located in the IntLib runtime library which also contains other routines related to the heap.

“HeapPtr” is declared as an external variable by default.

Examples:

HeapPtr:=$C000; //set heap pointer to address $C000.

If HeapPtr + SizeOf(MyNewVariable) > $F000 then writeln(‘Heap overflow !!!’);

Embedded Pascal itself does never use the heap. So if your program does not use the heap either, you do not have to initialize the heap pointer variable “HeapPtr”.

 �

Procedures and Functions

A Pascal program consists of one or more blocks, each of which may again consist of blocks. One such block is a procedure, another is a function (in common called subprograms). Thus, a procedure is a separate part of a program, and it is activated from elsewhere in the program by a procedure statement (see page 56). A function is rather similar, but it computes and returns a value when its identifier, or designator, is encountered during execution.

C programmers are familiar with the type function. A procedure is a function that does not return any result. This may seem unnecessary but it actually allows the compiler to produce more compact code.

Parameters

Values may be passed to procedures and functions through paramefers. Parameters provide a substitution mechanism which allows the logic of the subprogram to be used with different initial values, thus producing different results.

The procedure statement or function designator which invokes the subprogram may contain a list of parameters, called the actual parameters. These are passed to the formal parameters specified in the subprogram heading. The order of parameter passing is the order of appearance in the parameter lists. Pascal supports two different methods of parameter passing. by value and by reference, which determines the effect that changes of the formal parameters have on the actual parameters.

When parameters are passed by value, the formal parameter represents a local variable in the subprogram, and changes of the formal parameters have no effect on the actual parameter. The actual parameter may be any expression, including a variable, with the same type as the corresponding formal parameter. Such parameters are called a value parameter and are declared in the subprogram heading as in the following example. This and the following examples show procedure headings; function headings are treated later.

procedure Example(Num1,Num2: Number; Str1,Str2 : Txt);

Number and Txt are previously defined types (e.g. Integer and string[255]), and Num1, Num2, Str1, and Str2 are the formal parame ters to which the value of the actual parameters are passed. The types of the formal and the actual parameters must correspond.

Notice that the type of the parameters in the parameter part must be specified as a previously defined type identifier. Thus, the construct:

procedure selectIModel(array[1. .500] of Integer);

is not allowed. Instead, the desired type should be defined in the type definition of the block, and the type identifier should then he used in the parameter declaration:

type

Range: array[1. .500] of Integer;

procedure Select(Model: Range);

When a parameter is passed by reference, the formal parameter in fact represents the actual parameter throughout the execution of the sub program. Any changes made to the formal parameter is thus made to the actual parameter, which must therefore he a variable. Parameters passed by reference are called a variable parameters, and are declared as follows:

procedure Example(Var Num1,Num2: Number)

Value parameters and variable parameters may he mixed in the same procedure as in the following example:

procedure Example(Var Num1,Num2: Number; Str1,Str2: Txt);

in which Num1 and Num2 are variable parameters and Str1 and Str2 are value parameters.

All address calculations are done at the time of the procedure call Thus, if a variable is a component of an array, its index expression(s) are evaluated when the subprogram is called.

When a large data structure, such as an array, is to be passed to a sub program as a parameter, the use of a variable parameter will save both time and storage space, as the only information then passed on to the subprogram is the address of the actual parameter. A value parameter would require storage for an extra copy of the entire data structure, and the time involved in copying it.

Relaxations on Parameter Type Checking

String types are always compatible with each other regardless of their lengths. Also, if a string is expected, a character may be passed (Equivalent of a string of one character length).

Most other Pascal compilers allow similar behavior, sometimes a compiler directive or setup will have to be executed in order to achieve this.

Untyped Variable Parameters

Embedded Pascal does not allow the specification of untyped parameters, although they are in fact used for some standard functions and procedures such as:

Addr, FillChar, Move, etc, or as the address specification of absolute variables.

Procedures

A procedure may be either pre-declared (or standard) or user-declared, i.e. declared by the programmer. Pre-declared procedures are parts of the Embedded Pascal system and may be called with no further declaration. A user-declared procedure may be given the name of a standard procedure; but that standard procedure then becomes inaccessible within the scope of the user declared procedure.

Procedure Declaration

A procedure declaration consists of a procedure heading followed by a block which consists of a declaration part and a statement part.

The procedure heading consists of the reserved word procedure followed by an identifier which becomes the name of the procedure, optionally followed by a formal parameter list as described earlier.

Examples:

procedure Log0n;

procedure Position(X,Y: Integer);

procedure Compute(Var Data: Matrix; Scale: longint);

All identifiers declared in the formal parameter list and the declaration part are local to that procedure, and to any procedures within it. This is called the scope of an identifier, outside which they are not known. A procedure may reference any constant, type, variable, procedure, or function defined in an outer block.

The statement part specifies the action to he executed when the procedure is invoked, and it takes the form of a compound statement. If the procedure identifier is used within the statement part of the procedure itself, the procedure will execute recursively.

Please note the limitations imposed on recursive calls when using Embedded Pascal.

The next example shows a program which uses a procedure and passes a parameter to this procedure. As the actual parameter passed to the procedure is in some instances a constant (a simple expression), the formal parameter must be a value parameter.

program Box;

Var

I:	Integer;

procedure DrawBox(X1,Y1,X2,Y2: Integer);

Var I: Integer;

begin

 GotoXY(X1,Y1);

 for I := X1 to X2 do write('-');

 for I := Y1+1 to Y2 do

 begin

 GotoXY(X1,I);

 Write('!');

 GotoXY(X2,I);

 Write(‘!');

 end;

 GotoXY(X1,Y2);

 for I:= X1 to X2 do Write('-‘);

 end; { of procedure DrawBox }

 begin

 ClrScr;

 for I := 1 to 5 do DrawBox(I*4,I*2,lO*I,4*I); DrawBox(1,1,80,23);

end.

The above example assumes that you have defined the procedures GotoXY (position cursor on terminal), ClrScr (clear the screen) and Write (write a string at cursor position).

Often the changes made to the formal parameters in the procedure should also affect the actual parameters. In such cases variable parameters are used, as in the following example:

procedure Switch(Var A,B: Integer);

Var Tmp: Integer;

begin

Tmp := A;

A := B;

B := Tmp;

end;

When this procedure is called by the statement:

Switch(I,J);

the values of I and J will he switched. If the procedure heading in Switch was declared as:

procedure Switch(A,B: Integer);

i.e.	with a value parameter, then the statement Switch(I,J) would not change l and J.

Extensions to Pascal as defined by N.Wirth

Embedded Pascal contains a number of extensions to the Pascal language. Most of these can also be found in the excellent Pascal compilers from Borland.

Exit

Syntax:	Exit;

Exits the current block. When exit is executed in a subroutine, it causes the subroutine to return. When it is executed in the statement part of a program, it causes the program to terminate. A call to Exit may be compared to a goto statement addressing a label just before the end of a block.

When used in a procedure, Exit results in the insertion of a RET opcode. If used in a function, Exit executes code necessary to push the return value on to the stack and then executes a RET opcode.

Break

Syntax:	Break;

This statement can be used inside “for”, “while” and “repeat” statements. The Break statement immediately exits the compound statement (i.e. the part between begin and end) of the aforementioned statements. Program execution continues with the statement immediately following the "end” of the compound statement.

Example:

For n:=1 to 10 do

Begin

 If n=5 then break;

End;

W:=n;	//W will be set to the value 5

Continue

Syntax:	Continue;

This statement can be used inside “for”, “while” and “repeat” statements. The Continue statement interrupts the normal flow of program execution within the compound statement of the aforementioned statements and transfers execution to the beginning of the compound statement. In the case of the “for” statement the “for” loop variable will be incremented / decremented as required.

In case of the “while” statement, the condition of the “while” statement will be evaluated next, similar for the “repeat” statement.

Example:

W:=1;

For n:=1 to 10 do

Begin

 If n=5 then continue;

 Inc(W);

End;

//At this point the variable W will contain the value 9.

Standard Procedures

Embedded Pascal contains a number of standard procedures.

Move

Syntax:	Move(var1, var2,Num);

Does a mass copy directly in memory of a specified number of bytes. van and var2 are two variables of any type, and Num is an integer expression. The procedure copies a block of Num bytes, starting at the first byte occupied by var1 to the block starting at the first byte occupied by var2.

Warning: Move always does a “forward” move. If this is not possible due to overlap, you must provide your own “Move” routine.

Fillchar

Syntax:	FiIIChar(Var, Num, Value);

Fills a range of memory with a given value. Var is a variable of any type, Num is an integer expression, and Value is an expression of type Byte or Char. Num bytes, starting at the first byte occupied by Var, are filled with the value Value.

Inc

Syntax:	Inc(Num);

Increments Num by one. Num is of any scalar type.

Note: Overflow will result in the value 0 in case of Word and Byte, -32767 or -2147483647 in case of integer or longint.

Dec

	

	Syntax:	Dec(Num);

Decrements the value of Num by one. Num is of any scalar type.

Note: Underflows will result in the largest value than can fit into the target type.

If a byte is zero then dec(byte) will result in the value 255.

Functions

Like procedures, functions are either standard (pre-declared) or declared by the programmer.

Function Declaration

A function declaration consists of a function heading and a block which is a declaration part followed by a statement part.

The function heading is equivalent to the procedure heading, except that the heading must define the type of the function result. This is done by adding a colon and a type to the heading as shown here:

function KeyHit: Boolean;

function Compute(Var Value: Sample): Longint; function Power(X,Y: Longint): Longint;

Embedded Pascal can return function results of any type, including pointers, arrays and records. If a function returns a pointer, the pointer must be assigned to another pointer before the value pointed to can be accessed.

Other Pascal compilers may handle this differently, usually they do not allow arrays (except for string arrays) or records as function results.

The declaration part of a function is the same as that of a procedure.

The statement part of a function is a compound statement as described with procedures. Within the statement part at least one statement assigning a value to the function identifier must occur. The last assignment executed determines the result of the function. If the function designator appears in the statement part of the function itself, the functIon will be invoked recursively (Restrictions on recursion must be taken into account).

The following example shows the use of a function to compute the sum of a row of integers from I to J.

function RowSum(I,J: Integer): Integer;

 function SimpleRowSum(S: Integer): Integer;

 begin

 SimpleRowsum := S*(S+1) div 2;

 end;

begin

 RowSun : = SimpleRowSum(J)-SimpleRowsum(I-1);

end;

The function SimpleRowSum is nested within the function RowSum SimpleRowSum is therefore only available within the scope of RowSum

Note that the type used in the definition of a function type must be previously specified as a type identifier. Thus, the construct:

function Lowcase(Line: UserLine): string[80];

is not allowed. Instead, a type identifier should he associated with the type string[80], and that type identifier should then he used to define the function result type, for example:

type

Str8O = string[80];

function Lowcase(Line: UserLine): Str8O;

Standard Functions

Arithmetic Functions

Abs

Syntax:	Abs(Num);

Returns the absolute value of Num. The argument Num must be either

Integer or longint, and the result is of the same type as the argument.

If you use a Byte or Word as argument, it will be treated as Integer. This means that the byte value will always be returned as the result unchanged while the Word value will return Value-32767 if Value is greater than 32767.

Scalar Functions

Pred

Syntax:	Pred(Num);

Returns the predecessor of Num if one exists. Num is of any scalar type.

In case of bytes,words and chars, pred will return a minimum value of zero (#0). Integers –32768 and longints will return a highest negative number of –2147483648.

Note that this function should be used instead of the more common:

Var

 N: word;

Begin

 If n>0 then dec(n);

End;

Using:

Var

 N: word;

Begin

 N:=pred(n);

End;

…does exactly the same as above, only much more efficient. You should use this whenever possible. Note that not all Pascal implementations are compatible with Embedded Pascal in this regard. Please check if you are using another Pascal compiler to run a simulation of your embedded project. Borlands Delphi is quite OK, but you must turn range checking off !

Succ

Syntax:	Succ(Num);

Returns the successor of Num if one exists. Num is of any scalar type.

	In case of bytes or chars, succ will return a maximum value of $FF (#$FF), words $FFFF, integers $7FFF and longints $7FFFFFFF.

Unlike the “inc” procedure, succ will not cause an overflow error.

Odd

Syntax:	Odd(Nurn);

Returns boolean True is Num is an odd number, and False if Num is even.

Transfer Functions

The transfer functions are used to convert values of one scalar type to that of another scalar type. In addition to the following functions, you can use type casts; however these functions can be used in constant declarations where type casts cannot.

Chr

Syntax:	Chr(Num);

Returns the character with the ordinal value given by the integer expression Num. Example: Chr(65) returns the character 'A'.

This function can be used in constants and typed constants where it will be evaluated at compile time.

Ord

Syntax:	Ord(Var);

Returns the ordinal number of the value Var. Var may be of any scalar type and the result is of type Integer.

This function is most often used to convert a char to a byte.

This function can be used in constants and typed constants where it will be evaluated at compile time.

Miscellaneous Standard Functions

Hi

Syntax:	Hi(I);

The low order byte of the result contains the high order byte of the value of the integer expression I. The high order byte of the result is zero. The type of the result is Word.

Lo

Syntax:	Lo(I);

Returns the low order byte of the value of the integer expression I with the high order byte forced to zero. The type of the result is Word.

HiWord

Syntax:	HiWord(I);

The result contains the high order word of the value of the longint expression I. The type of the result is Word.

Note: This function is an Embedded Pascal extention. It is not normally found in other Pascal compilers.

LoWord

Syntax:	LoWord(I);

Returns the low order word of the value of the longint expression I. The type of the result is Word.

Note: This function is an Embedded Pascal extention. It is not normally found in other Pascal compilers.

SizeOf

Syntax:	SizeOf(Name);

Returns the number of bytes occupied in memory by the variable “Name”.

This function can be used in constants and typed constants where it will be evaluated at compile time.

Upcase

Syntax:	UpCase(ch);

Returns the uppercase equivalent of its argument ch which must be of type Char. If no uppercase equivalent exists, the argument is returned unchanged.

POS

Syntax:	POS(substr,string);

Returns the position of “substr” in “string”. The first position in string is “1”. The result is of type word. If “substr” cannot be found, the function returns a “0”. “Substr” may be a string expression or a character.

Note that the POS function has a slight limitation when compared with “standard Pascal”: “string” must refer to an existing string variable. It may not be a string expression. This has been done to improve performance.

POSN

Syntax:	POSN(substr,string,position);

This is a non-standard Pascal function. It is functionaly similar to the “POS” function in that it can be used to find a substring in a string. POS searches for the substring starting at the beginning of the string to search. It can find only one occurrence of the substring. POSN on the other hand allows you to start the search from any position inside the string, thus POSN can be used to find multiple occurrences of the substring.

POSN Returns the position of “substr” in “string”. The first position in string is “1”. The result is of type word. If “substr” cannot be found, the function returns a “0”. “Substr” may be a string expression or a character. “position” may be any number from 1 to 255 subject to the actual string length. A search past the end of the string will return a “0” result.

POSN(substr,string,1) is the equivalent of POS(substr,string).

Note that the POSN function has a slight limitation when compared with “standard Pascal”: “string” must refer to an existing string variable. It may not be a string expression. This has been done to improve performance.

Example:

Var

 S: string[30];

 N: word;

begin

 S:=’Hello World Hello World’;

 N:=POSN(‘World’,s,10); //N will be set to 19

End;

Forward References

A subprogram is forward declared by specifying its heading separately from the block. This separate subprogram heading is exactly as the normal heading, except that it is terminated by the reserved word forward. The block follows later within the same declaration part. Notice that the block is initiated by a copy of the heading, specifying only the name and no parameters, types, etc.

Example:

program Catch22;

Var

 X:	Integer;

function Up(Var I: Integer): Integer; forward;

function Down(Var I: Integer): Integer;

begin

 I := I div 2; Writeln(I);

 if I <> 1 then I := Up(I);

end;

function Up; //note that the parameters are not repeated

begin

 while I mod 2 <> 0 do

 begin

 I:=1*3+1; Writeln(I);

 end;

 I := Down(I);

end;

begin

 Write('Enter any integer: ');

 Readln(X);

 X := Up(X);

 Write('Ok. Program stopped again.');

end.

Note: This program assumes that you have provided Write, Writeln and ReadLn procedures/functions.

When the program is executed and if you enter e.g. 6 it outputs:

�

3

10

5

16

8

4

2

1

Ok.	Program stopped again.

The above program is actually a more complicated version of the following program:

program catch222;

Var

X: Integer;

begin

Write(‘Enter any integer: ‘); Readln(X);

while X <> 1 do

begin

if X mod 2 = 0 then X := X div 2 else X := X*3+1;

Writeln(X)

end;

Write('Ok. Program stopped again.');

end.

It may interest you to know that it cannot be proved if this small and very simple program actually will stop for any integer!

�

Including files

Embedded Pascal provides an “include” file system compatible to Borlands Pascal compilers.

The include facility also aids program clarity, as commonly used subprograms, once tested and debugged, may be kept as a 'Iibrary' of files from which the necessary files can be included in any other program.

The syntax for the Include compiler directive is:

{#I filename}

where filename is any legal file name. Leading spaces are ignored (you should at least have one). If you do not specify a path, the file is assumed to reside in the project directory.

Include files are similar to the ones used in C compilers and can be used for the same purposes (such as header files for externally declared functions and procedures, type definitions and the like).

Please note that Embedded Pascal uses a “#” hash instead of the more common “$”. This allows the same source code to compile in both Delphi and Embedded Pascal. Example: You have a “include” file that contains I/O routines (say simple I/O to screen and from keyboard). Obviously, when running your program in Delphi you need to do “Windows” I/O, so you use the Delphi “include directive” as {$I Filename}. Embedded Pascal however ignores this and instead uses {#I Filename} (which Delphi ignores). The Embedded Pascal include file would contain the routines necessary to do I/O on your target system (such as scanning a key matrix or interfacing to a LCD display).

Include files may be nested for up to 10 levels. Note that other Pascal Compilers may not allow this.

Apart from using include files (which are completely compiled at compile time), you can use pre-compiled Pascal and Assembler modules that are linked. The standard Pascal run time library “INTLIB.RRO” is an example of a linked file that every Pascal program will require. You can create your own libraries or modify “INTLIB.ASM”.

�

Overlay system

The overlay system lets you create programs much larger than can be accommodated by the computers memory. The technique is to collect a number of subprograms (procedures and functions) in one or more memory areas separate from the main program file, which will then be loaded automatically one at a time into the same area in memory, which must be RAM.

The following drawing shows a program using one overlay file with five overlay subprograms collected into one overlay group, thus sharing the same memory space in the main program:

	Main program	Overlay procedures and functions

 (typical layout)

Program code (ROM)�������Run time library�����Assembler routine library����

����Overlay Area 1 (RAM)��Overlay Area 2 (RAM)��

When an overlay procedure is called, it is automatically loaded into the overlay area reserved as block in the data area (RAM). This area is large enough to accommodate the largest of the overlays in the group. The space required by the main program is thus reduced by roughly the sum of all subprograms in the group less the largest of them.

Of course, there is overhead involved every time an overlay procedure is called. While a normal procedure call takes just three bytes, an overlay call takes 6 bytes. In addition, Embedded Pascal prepares an overlay procedure information database which is inserted into the code area (ROM). This database contains information as to the location of the procedure in ROM, its size and target overlay area. This information is passed on to an overlay loader which must determine if the called routine already exists in the overlay area (loaded there from a previous call). In not the overlay loader must first transfer the code into the overlay area before executing it.

Embedded Pascal allows you to store the overlay procedures in ROM (up to a maximum size of 256K) at an address you specify ({#O} directive.

You provide the overlay loader. Example (fully functional) code that uses one of the internal DMA channels on a HD64180 (Z180) processor is provided. At 6 MHz clock overlay procedures are moved at 1 Mbyte/ second.

If you use a Z80 core processor with only 64K addressable range, you must provide some hardware means on your embedded system to access the overlay code. This could be done using bank switching or some other scheme.

Embedded Pascal’s overlay system is similar to the one employed by Borlands Turbo Pascal version 3 system, but does not use the reserved word “overlay”.

The Embedded Pascal method has the benefit of being source code compatible with Borlands Delphi, which does not know about overlays. Embedded Pascal’s overlayed source code will compile unchanged under Delphi !

A note of interest: Delphi DOES use overlays, as does any other Windows 95 based application, only, Windows 95 itself manages this in the form of virtual memory (remember the big swap files ?). Windows DLL files fit almost perfectly the description of an overlay file (containing, of course, procedures and functions). Do not make the mistake of thinking that overlay systems belong to the dark ages of computing. If you use them, even on 8 bit processors, you are in good company !

Creating Overlays

The first step in creating overlays is to tell the compiler from where in the ROM space of up to 256K you would like the overlay procedures and functions to be stored for later retrieval. This is done as follows:

{#O $10000}

This directive instructs the compiler to start loading the overlay procedures starting at address 10000H. Of course you may supply any other, valid address, taking care not to cause the compiler to overwrite any other code.

This directive must be supplied once, before you can use the {#O+} directive to start an overlay block.

Overlay subprograms are created automatically, simply by adding the compiler directive {#O+} immediately BEFORE the first procedure declaration that you want to group with other procedures into one overlay area:

{#O+}

 procedure Initialize;

begin

end;

function TimeOfDay: Time;

begin

end;

procedure Scan(a,b);

begin

end;

{#O-}

The {#O-} directive informs the compiler of the end of the overlay block.

Nested Overlays

Overlay subprograms may be nested up to a level of two. i.e. an overlay subprogram may itself contain overlay subprograms.

program OverlayDemo;

{#O+}

procedure LevelOneProcOne;

begin

end;

procedure LevelOneProcTwo;

begin

end;

procedure LevelOneProcOne;

 {#O+}

 procedure LevelTwoProcOne;

 begin

 end;

 procedure LevelTwoProcTwo;

 begin

 end;

 {#O-}

begin

end;

procedure LevelOneProcTwo;

begin

end;

	{#O-}

Restrictions Imposed on Overlays

Data Area

Overlay subprograms in the same group share the same area in memory and thus cannot be present simultaneously. They must therefore not call each other. Consequently, they may share the same data area which further adds to the space saved when using overlays (See directive {#S} for info on sharing local variables).

This limitation however only applies to the overlay loader which has been supplied as example. Overlay procedures within the same overlay area calling each other IS possible if you supply the code to do so !

In short, the overlay loader must recognize this event and store a pointer to the overlay info area (with which the overlay loader was provided upon call of the overlay procedure) in addition to the normal program location counter.

As Return address, push a location within the overlay loader that will restore the previous overlay procedure before returning control to that procedure.

However, consider if this overhead is really necessary for your application before proceeding.

Number of overlay Areas

Embedded Pascal allows you to use up to 30 overlay areas within one Pascal module. Each area may contain up to 255 overlay procedures or functions.

Initialization of the overlay system

The overlay system must be initialized before it can be used. This is done by simply calling the built-in procedure InitOverlay once at the beginning of your program.

You must not forget to do this. If you do not do this the chances are very good that your program will still run – most of the time. On occasion it will crash on first usage of an overlayed procedure or function because the overlay manager believes the overlay procedure or function is already in place when it is not.

Example:

Begin

 InitOverlay;

End.

�

The minimum Pascal project

Every Embedded Pascal project consists of “modules”. Each module is one of the following:

A Pascal source file with or without include files (which compiles to an assembler source file)

An assembler source file

An object file

Your Pascal project will consist of a minimum of two modules:

At least one Pascal source file

The Pascal run-time library

To this you would normally (but not necessary) add a small assembler source file which may contain code to execute after reset of the CPU. You would initialize the stack pointer, the interrupt system and probably any I/O devices your embedded application requires. Thereafter you would perform a jump instruction to the main procedure of your Pascal code. This main procedure would probably execute an endless loop, calling procedures and functions as required by your application.

You need to know how Embedded Pascal generates labels for procedures, functions and variables so you can use these effectively from within your assembler code.

Embedded Pascal label convention

Embedded Pascal label generation uses the following conventions:

Any label, except for externally declared ones starts with the name of the main procedure (could also be the program name).

Any procedure or function has one “@” symbol pre-fixed to the label name.

The procedure, function or variable name is attached next, using a “_” (underscore) as separator.

In case of variables local to a procedure or function or parameters, the variable/parameter name follows the procedure or function name, again separated by one “_”.

In case of multi-level procedure and function nesting, only the outermost procedure and function name will be used.

This implies that it is not possible in Embedded Pascal to use two procedures or functions with the same name, even if they are in different blocks !

Here is a skeletal program showing all label types. The label names are in the comments:

Program MyProg;

Var

 A: word;	// MyProg_A

Procedure Proc1Level1(B: word); // @MyProg_Proc1Level1 and MyProg_Proc1Level1_B

Var

 C: word;	// MyProg_Proc1Level1_C

 Procedure Proc1Level2(D: word); // @MyProg_Proc1Level2 and MyProc1Level2_D

 Var

 E: word; // MyProg_Proc1Level2_D

 Begin

 End;

Function Func1(F: word) : word; // @MyProc_Func1 and MyProc_Func1_F and MyProc_Func1

Begin

End;

Begin	// @MyProc

End;

From the above example you can see that to start the Pascal code (in a normal fashion) you would perform an assembler jump to the label @MyProc. If you are expecting your main procedure to exit (after finishing some task) then you should perform a call @MyProc instead.

You should be able to guess how parameters are passed to procedures and functions by now:

Before the call, simply load the parameter variables with the required values and call the procedure or function. It is legal to not supply any parameters at all if your procedure or function is designed that way.

There is no need to transfer parameters onto the stack, removing them in the correct order inside the procedure or function like you would do in a “normal” compiler environment.

Looking at the function “Func1” in the above example you can see a label MyProc_Func1. This label points to the function return result which can thus be freely accessed from your assembler code.

Please note that functions return their result on the stack, so if you call a function from assembler code, you must remove the function result from the stack after the call.

Using Skeletal code to understand Embedded Pascal

Often, you may be faced with the question of interfacing assembler code to Embedded Pascal or, indeed, Embedded Pascal to assembler.

The probably easiest path to follow if you are not familiar with Embedded Pascal is to write skeletal code for a procedure or function with just as much code inside the procedure and function to access every parameter and return value in case of functions. Then, call the procedure or function from your program somewhere.

Compile the program and then scan the resultant assembly code for your skeletal code. Study the code to find out how to do your own.

This gives you enough information to be able to either call a Pascal procedure or function from assembly code or vice versa.

You will find that Embedded Pascal is very easy to use from an assembler programming point of view.

�

External and Global declarations

Embedded Pascal allows you to use procedures, functions and variables declared as “global” in other modules as if they were declared inside the current module. This is done by using the reserved symbols global and external .

The main procedures name (or the program name) is declared global by default, This label represents the entry point to the final statement part between the final begin and end keywords.

This label is formed by adding the program name to the ‘@’ symbol. If your program is called MyProg then the label is @MyProg. You will use this label as entry point when you start the program.

Declare a variable external

Example:

Var

 A: word; external;

 MyArray: array[0..99] of byte; external;

Declare a variable global

Example:

Var

 A: word; global;

 MyArray: array[0..99] of byte; global;

Declare a procedure or function external

Example:

Procedure MyProc(A,B: word); external;

Function MyFunc(A,B: word) : word; external;

A procedure or function declared external has no declaration part.

Declare a procedure or function global

Example:

Procedure MyProc(A,B: word); global;

Begin

End;

Function MyFunc(A,B: word) : word; global;

Begin

End;

Using type declarations globally

While you can declare variables, typed constants, procedures and functions global and import them using the “external” keyword, the same cannot be done with type declarations and untyped constants.

If you require to use such declarations in more than one module, you should group the declarations into a new Pascal source file and include that file in the modules where required. (use the {#I filename} directive.

About external and global labels

If you declare a procedure global, the procedure name and all of its parameters are declared global. For a function, the function result is also declared global. The label names follow the Embedded Pascal label convention exactly.

If you would like to declare an external procedure or function you must give a name that is identical to the global declaration of that procedure or function.

Example:

File1.pas

Procedure Utilities;

Procedure MyUtil(A,B: word); global;

Begin

End;

Begin

End.

File2.pas

Program MyProg;

Procedure Utilities_MyUtil(A,B: word); external;

Begin

 Utilities_MyUtil(5,10);

End.

If you declare a procedure, function or variable external, there must be a matching global declaration in one and only one module that is part of your project. If not, or if there is a duplicate, the linker will fail with an appropriate error message.

Note that you can access a global procedure or function from anywhere in another module regardless of scope.

�Absolute references

Embedded Pascal allows you to refer to absolute placed variables, functions and procedures. Typical uses are to declare references to fixed locations such as might be required to access operating system code or data (CP/M). However, you can use the absolute keyword to define overlayed data areas as well (similar to the C "Union").

To allow compatibility between compilers, Embedded Pascal allows you to use the absolute keyword in two ways:

var

 x: word absolute $8000;	//or you may use the following:

 x: word; absolute $8000;

Similar you may declare absolute procedures and functions:

procedure Abs(x: word) absolute $F000; //or as

procedure Abs(x: word); absolute $F000;

The absolute location may be defined as any valid 16 bit address or you may refer to an existing location by name:

var

 x1: word absolute $8000;

 x2: word absolute x1;

In the above example, both x1 and x2 would occupy the same memory locations.

Note that absolute procedures and functions do NOT have a body, i.e. you cannot declare a procedure including its code to be absolute. You use the absolute keyword to refer to items that exist by other means in memory such as operating system entry points. Incidentally, although it is quit legal to pass parameters to an absolute procedure or function, this does not normally work since you may have to pass your arguments in a particular manner (CPU registers maybe...). Any arguments you do specify will be allocated in data space same as with a normal procedure or function.

Interesting tip:

Using the absolute keyword you can create overlayed procedures. Consider a procedure that you want to call with a variety of parameter structures. If your procedure is clever enough to handle this, it allows for some interesting code. This is partly aided by the fact that Embedded Pascal does not pass parameters on the stack.

Recursion

A feature of any modern compiler is to allow recursion. Recursion is defined as any given procedure or function being permitted to call itself. This however can only work if all local variables including arguments are allocated on the stack on a temporary bases, valid only for the lifetime of the procedure or function call.

Embedded Pascal allows you to call a procedure or function recursively, but (and this is a "big" but), local variables and parameters are allocated at compile time and are therefor "static".

You can help yourself by pushing all parameters and local variables onto the stack before doing the recursive call and restoring them after the call. The next version of Embedded Pascal will automate this for you, but for now you have to do your own thing.

The intended applications for Embedded Pascal, to be fair, will most likely never require recursion, hence the decision to use static variables for speed and code size advantages through-out. You will use recursion typically for some sort-algorithms or if you are writing a parser for a compiler. I will assume that it is very unlikely that you want to use Embedded Pascal to do the latter.

�The Optimizer

Embedded Pascal, like most modern compilers, contains a code optimizer that can reduce code size and execution times of the produced code.

Unlike other compilers you cannot switch this optimizer off (Well, I cannot see a good reason why anybody would want to do that...).

Optimizing generated code is quite a task. Roughly a third of the Embedded Pascal compiler is dedicated to this.

Optimization is done on various levels, knowledge of some of the details can help you produce even better code.

The optimizer takes care of:

 out redundant stack operations

Evaluating expressions at compile time where possible

Avoiding the storage of duplicate strings in the code segment

Turning often used array and record index calculations into subroutines (You can influence this with the {#R} directive).

Code substitutions - Replacing certain code "patterns" with more effective ones.

Optimizing "case statements" where possible

 Yes, while the compiled code compares very well with that of other compilers, there is always room for improvement. Expect future versions of Embedded Pascal to produce even better code ! The compiler is now at the point where comparatively large additions to the optimizer produce only relatively small improvements to the produced code.

 You can help improve the quality of the produced assembler code yourself by coding your code in such a way that it fits the target processor well:

On 8051/8052 systems avoid data types other than byte like the plague ! This CPU is not very good at anything requiring more than one byte. Integers, words, and so on only if absolutely necessary !

On Z80/Z180 systems Use byte as first choice, then word, then integer, then longint. Real (once available) is the worst data type to use. Efficiency differences between byte and word use are very small (Consider data storage though !). Integer is very slightly worse of than word (Multiply and divide only). Longint is a killer of course, but not to bad. Use only when really required.

On 8051/8052 systems string handling is expensive so use with care. Z80/Z180 handles strings quite well mainly due to the block-move instructions.

The parser will work out: x:=5+5+Variable; as being x:=10+Variable; but not x:=5+Variable+5; !!!

The parser will evaluate expressions containing constants at compile time that use +,-,*,\ and div but not xor,or,and,shr,shl.

Avoid repetitive coding. Consider creating subroutines for similar code blocks.

Try and structure case statements in such a way that the optimizer can use a jump table. (See documentation on the case statement).

While often being put down as "unprofessional", a couple of "goto statements" can result in more compact code compared to trying to work your way out of a deeply nested, structured routine, say in the case of an error.

Try and use the "repeat statement" or "while statment" instead of the "for statement". While the "for statement" is certainly very convenient, it does require a little more code and data space.

In certain cases you may want to create procedures written in hand coded, tight assembler. While Embedded Pascal comes remarkably close to hand coded assembler if you view a program as a whole, you may find that you can better Embedded Pascal in some cases. Consider factors such as Portability (Delphi), readability and maintainability of your program before hand coding to much.

Software that interfaces directly to hardware, such as a display or keyboard driver should be written in assembler for maximum effect. If your code space and execution timing is not critical, then use Pascal instead.

Use Overlays if possible. Using Overlays and/or code and data banking (Z180) you can run a remarkably large application on your 8 bit CPU ! Pascal applications consisting of 20000 lines or more of source are possible !

�

File locations

You should organize your application so all files common to the application are located in one directory, preferably a sub directory to the Embedded Pascal directory.

Your Application Directory should contain the project file (*.prj) and any Pascal and Assembler source files the project requires.

As far as the Pascal Library is concerned, you have choices:

Use a copy of the IntLib.Mac file or IntLib.RRO file and place it in the project directory. This option is handy if your project requires a customized version of the library (Maybe a modified "__OverlayHandler" function).

Use a common copy of the IntLib.Mac or IntLib.RRO file. This file should be located either in the Embedded Pascal directory or in the "Lib" directory. Note that you may rename the IntLib files to suit your needs.

	 Embedded Pascal will search for a file belonging to an application in the following order:

The location of the project file (*.prj)

The location of the path of the file (if any)

The Embedded Pascal application path (location of Z180PAS.EXE)

The "Lib" directory

The "Default" directory

��������������������������������������A typical Embedded Pascal Project - overview�

Inline assembler

Embedded Pascal permits inline assembly code. Inline assembly code is started with the keyword asm and ends with an end statement.

As Embedded Pascal produces assembly code rather than object code, the inline assembler is really just a pass-through: everything you type between the asm and the end is passed to the generated assembler source without change. This implies the following:

Any error you make will not be found by the Pascal compiler, rather it will be found by the assembler.

You can pass anything that resembles valid assembler code, including comments and assembler directives.

You can reference any label generated by the Pascal Compiler. This means you have unlimited access to any variable, procedure or function. Pascal’s scope rules do not apply !

Example:

Program MyProc;

Function MyFunc(X: word) : word;

Begin

 MyFunc:=X+10;

End;

Procedure AssemblerProc(A: word);

Var

 B: word;

Begin

 Asm

 Ld hl,5555H

 Ld de,(MyProc_AssemblerProc_A)	;get parameter A value

 Ld (MyProc_AssemblerProc_B),hl	;load local variable B

	Add hl,de

 Ld (MyProc_MyFunc_X),hl		;load parameter for MyFunc

Call @MyProc_MyFunc		;call function MyFunc

Pop hl				;get function result	

Ld (MyProc_AssemblerProc_B),hl

 End;

End;

Begin

End.

In order for the inline statements to be transferred to the final assembler source, please ensure that you, as in the above example, place the asm keyword and the final end; into lines of their own. Your inline assembly code may not have the word end; (semicolon included) as part of any line.

Embedded Pascal’s inline assembler can help avoid the need for any external assembler modules. Inline assembler is also very useful for writing fast interrupt routines.

The disadvantage of using inline assembler within your main Pascal program is that you cannot compile this type of source under Delphi as Delphi does not understand assembler other than that of Intel x86.

One way around this is to locate all your inline assembler within procedures in a separate Include file, only visible to Embedded Pascal. When compiling under Delphi, include a different file that contains emulations either in Pascal or x86 assembler.

You are reminded of the useful comment constructs to help you here:

{*} This text is a comment in Embedded Pascal but not in Delphi {*}

{*! This text is a comment in Delphi but not in Embedded Pascal !*}

Compiler directives

Embedded Pascal provides several compiler directives. This chapter lists all of them. Most compiler directives start with the characters {# followed with a character identifying the type of directive. This is very similar to the way compiler directives are used in Borlands Pascal products. Borland however uses a “$” instead of the “#”. This way Borlands compilers view Embedded Pascal directives as comments and vice versa.

Link Instruction

	Normally, you would include a linker instruction before the program heading. The linker instruction specifies how the following source code is to be linked. One Pascal source file may have only one linker instruction. This linker instruction is optional. Not providing a Link instruction is equivalent to the Link instruction:

Link CodeAdd,DataAdd

Examples:

Link $1000,$8000		//link code from $1000 and data from $8000

Link CodeAdd,DataAdd		//link code and data relative to end of last code and data block

Link $1000,DataADD,$10000,ProgStart

The last example will link the code to run starting from address $1000, Data will be linked to start at the end of the last data block (last linker file)+1, The code will be loaded into ROM space at address $10000 and given the global load reference name of “ProgStart”. This last link instruction allows you to create banked code.

If you use the link instruction, you should enclose it with {*! Link,…. !*} if you plan on using the same source with a Borland Pascal compiler.

{#I IncludeFile}

This compiler directive is used to include a source file. Compilation continues at the first line of the included file until the last line. Thereafter, compilation continues at the line following the include directive.

Includefile is any valid filename. The filename may include a path. If no path is specified, then the include file is assumed to be in the project directory.

	Leading spaces before the filename are ignored (you should at least have one).

Include files are similar to the ones used in C compilers and can be used for the same purposes (such as header files for externally declared functions and procedures, type definitions and the like).

	Include files may be nested to a maximum depth of 10. This means included files may themselves have include files. Please note that this is not normally the case in Pascal compilers.

{#S datalocation} and {#S-}

These two directives are related. The #S datalocation directive instructs the compiler that you want the following procedures and functions to share their local dataspace (for parameters and local variables) with space provided at the location dataspace. You must repeat this directive for every procedure and function. The directive remains in force until you supply #S-.

Here is an example:

Var

 ShareArea: array[0..19] of byte;	// create a 20 byte area for sharing

{#S ShareArea}	// the following procedure(s) and functions(s) are to place their

			//parameters and local variables at “ShareArea”

procedure Shared1(a,b : word);

var

 C: word;

begin

end;

{#S ShareArea}	//Reset to the beginning of ShareArea. If not done, procedure

			//Shared2 ‘s parameters and local variables are also located at

			//ShareArea but following Shared1’s variables.

procedure Shared2(a,b : word);

var

 C: word;

begin

end;

{#S-}		//stop the sharing and continue as normal

This type of data space sharing is useful since Embedded Pascal advocates direct addressing modes to access local variables and parameters. Indirect addressing within a stack frame is not provided since the code size and performance penalty on typical 8 bit micro processors is just too great.

Parameters and local variables are thus created at fixed locations. (Equivalent to C’s static datatypes).

This results in good code but potentially wastes data (RAM) space since the local variables and parameters are only used during the time the relevant procedure or function is active.

If you know that two procedures or functions will never call each other directly or indirectly (usually true for most of them), then you can let them share common space in RAM.

If used with care, you can get data space usage down to close of what you can expect from using the stack, but without the penalty.

Having local variables and parameters available as static entities has an additional advantage: They are easily accessed from your assembler code at any time. Also, if a local variable is not shared, upon entry to its procedure, its value will be as it was when the procedure last accessed it. With local variables inside a stack frame, the value of the variable is undefined upon entry to the procedure.

Hint: To avoid “hard to find” bugs, if possible, start using sharing only once your code has been debugged and is running stable.

{#D+} and {#D-}

This directive is used to inform the compiler that you do or do not want a separate data space. A typical embedded application has ROM which contains the code and RAM which contains any data, stack and so forth.

The default is {#D+} which implies that you want a separate data segment (address given in the link instruction).

Use {#D-} if your application will be loaded into RAM space for execution. This way, the first data location is the last code location + 1. The address given the link instruction will be ignored. You can place the {#D-} anywhere in the code.

{#O nnnn}, {#O+} and {#O-}

These compiler directives control the generation of overlayed code. Please consult the chapter on overlays for detailed information.

{#C …}

This directive is used to specify conditional compilation as follows:

{#C Define ConditionalLabel}

Creates a global label that can be used in conditional compilation.

{#C IfDefined ConditionalLabel}

Will compile the following Pascal source code if “ConditionalLabel” has been defined. This Pascal source code must be terminated with either {#C Else} or {#C IfEnd}.

{#C IfNotDefined ConditionalLabel}

Will compile the following Pascal source code if “ConditionalLabel” has not been defined. This Pascal source code must be terminated with either {#C Else} or {#C IfEnd}.

{#C Else}

If the previous “IfDefined” or “IfNotDefined” directive has been evaluated as “false” then the following Pascal source code will be compiled. This Pascal source code must be terminated with {#C IfEnd}.

{#C EndIf}

Terminates the conditional Pascal source code started with either “IfDefined”, “IfNotDefined” or “Else”.

Conditional compilation is useful if you would like the same source to compile into different application variants by defining conditional labels.

{#R+} and {#R-}

This compiler directive switches a “selector recorder” on or off (default off {#R-}). Selectors are parts of the created assembler source that are concerned with calculating offsets into records and/or arrays. Consider the following selector:

MyArrayOfRecords[MainIndex,SubIndex].arrayOfBytes[x];

As you can imagine, it takes a fair number of assembler instructions to calculate the final address to access. Now, if you use this same statement in several locations within your code, you are potentially wasting valuable code space. The {#R} (“Recorder”) directive provides a nifty way to optimize your code further.

Whenever you switch the recorder on {#R+}, all calculation sequences for both arrays and records or any combination thereof are recorded an turned into subroutines. Any requirement within the code to use a sequence that exists as a subroutine will result in a call to that subroutine rather than a repetition of all instructions required to calculate the address again.

The Pascal “With” statement actually uses the same mechanism but is restricted to record calculations only.

Now, you may ask “If this is such a great thing, why is the recorder not switched on permanently ?”. Well, to be blunt, because Embedded Pascal is good !

Embedded Pascal’s optimizer goes to considerable lengths to optimize any array or record access anyway. Using the recorder on short, well optimized address calculations may actually increase code size and therefor worsen performance.

You should only apply the recorder to parts of your code that contain repetitive, lengthy or complex, accesses to arrays or records.

The same limitation applies to Embedded Pascal’s “With” statement. If you use it on simple record accesses, you will worsen rather than improve things !

Embedded Pascal’s optimizer improves array and record access code length and execution time to up to around 20% of that of some popular Pascal and C compilers for 8 bit processors. That is a 5 X gain ! This explains the relative inefficiency of the “With” statement, which has a larger impact with less efficient code.

To see whether your usage of the “With” statement or recorder is helping or not, look at the code size reported by Embedded Pascal after the compilation.

{#L+} and {#L-}

This directive affects the generation of Assembler labels for procedures, functions, variables and other identifiers. Normally, Embedded Pascal will prefix all generated assembler labels with the name of the program (name of the main procedure). This ensures that in a multi-module project you will not have problems with duplicate global identifiers. If you however have only one module you can issue the {#L-} directive resulting in the program name being omitted from any generated label name. This is also useful if you want to create a library of functions written in Pascal and you would like to export (declare global) the libraries procedures and functions without any prefix.

Default: {#L+}

{#PAnyText}

This is the “Pass though” directive. Any text appearing between the “P” and the “}” is passed unchanged on a line of its own to the generated assembler source text.

This directive is useful to pass assembler directives in places that cannot be accessed using the asm keyword which can only be used in procedures and functions.

You should add only one line of text inside the #P directive.

Examples:

{#P MemError 8000H,Max_Program_Size_Exceeded}

{#P Report EndOfProgram,End_Of_Program} //This example assumes that you have defined a label called

					 //EndOfProgram that will reflect the highest address used

�Interrupt procedures

You can write interrupt procedures in Embedded Pascal. No special syntax is required. You are responsible for saving registers at the beginning of the procedure and restoring them at the end. You should use an assembler inline statement for this (asm keyword). For fast interrupt response, you can use the alternate register set of the Z80/Z180 CPU as Embedded Pascal does not use it (for this very reason…).

You can generally use much of the IntLib runtime library except for the following:

Longint multipy,divide and mod

Any string manipulation except for simple assignments

Any string to int or int to string conversion

These functions are not re-entrant. If you want to be sure, compile your procedure and view the resultant assembly code. All IntLib references start with a “__” (double underscore). If you have purchased the library source, verify that the referenced routines do not access any fixed variables. These variables all start with “Arg” as in “Arg1”, “Arg2” and so forth.

Your Interrupt routine should save registers AF,HL,DE,BC and IX

You can use a function as an interrupt routine as well, but there is not much point in doing so.

Sample Interrupt procedure.

Procedure Interrupt; //the word “interrupt” is not a reserved word as in other compilers

Begin

 Asm

 Ex Af.Af’

	Exx

	Push ix

 End;

 // Do your interrupt processing here

 Asm

 Pop ix

	Exx

	ExAf,Af’

	Ei

	Reti

 End;

End;

Note that you are responsible for re-enabling interrupts and you must insert the RETI instruction. The compiler will insert the final RET which in the above example will never be reached.

You will probably need to refer to your interrupt procedure from an interrupt vector table. Here is such a table:

Const

 VectorTable: array[0..2] of pointer =

 (@Interrupt,@SerialPort,@TimerInt);

The “trick” is to get the table to a known, fixed address which usually has to start on a 256 byte boundary. It is not possible to define “absolute” typed constants, however, you can define absolute variables.

Define a variable of any type large enough to hold the vector table at an absolute address in RAM and then copy the constant table to RAM, last, load the I register of the CPU using an asm statement.

Var

 RAMVectorTable: array[0..2] of word; absolute $F000;

Begin

 Move(VectorTable,RAMVectorTable,6);

 Asm

	 Ld a,0F0H

	 Ld I,a

	 IM 2

	 EI

 End;

End.

 	

	

If you would like to use the RST38H vector for an interrupt, you should create a separate assembler file that defines a JP instruction at address 38H to an externally defined label which, of course, is your interrupt routine that you have declared global.

You COULD link your Pascal file from address 0, inserting the required JP instruction into a dummy procedure at the beginning of the Pascal source like:

Link 0,$8000

Program MyProg;

//Note: No typed constants may be defined BEFORE the “dummy” procedure !!!

Procedure Dummy;

Begin

 Asm

 JP @MyProg	;at reset vector address 0 jump to final begin (main procedure).

 ORG 38H

 	JP @MyProg_Interrupt

 End;

End;

Const

 V: byte=10;		//OK to define typed constants from here

Procedure Interrupt;

Begin

 Asm

 Ex Af.Af’

	Exx

	Push ix

 End;

 // Do your interrupt processing here

 Asm

 Pop ix

	Exx

	ExAf,Af’

	Ei

	Reti

 End;

End;

Begin

End.

�Internal data formats

Chars, Bytes

These types occupy one byte in data storage, but two bytes when located on the stack (due to CPU instruction set limitations). When on the stack, the most significant byte is set to zero.

Words, Integers

These types occupy two bytes in data storage and two bytes when located on the stack.

Storage is always LSB first.

Longint

This type occupies 4 bytes in data storage and 4 bytes when located on the stack.

Storage is always LSB first.

Strings

Strings are stored in data space occupying maximum length of string + 1 bytes. The maximum length of the string is set when defining the string variable, ie. String[20].

When located on the stack, only the current, actual contents of the string are stored + 1 length byte. The length byte is at the location the stack pointer points to while the string content follows.

A zero length string (empty string) occupies one byte on the stack (the length byte of zero).

The first location a string occupies is always the length byte.

Arrays

The array components with the lowest index values are stored at the lowest memory address. A multi-dimensional array is stored with the rightmost dimension increasing first. Given the array:

Board: array[1..8,1..8] of byte;

You have the following memory layout of its components:

Lowest address:	Board [1,1]

			Board [1,2]

			:

			:

			Board [1,8]

			Board [2,1]

			Board [2,2]

			:

			:

Highest address:	Board [8,8]

Records

The first field of a record is stored at the lowest memory address. The length of the record is given by the sum of the length of its individual fields.�

Function results

Functions return their results always on the stack. Functions returning byte, char, integer and word return a two byte or 16 bit value on the stack. In case of byte and char, the high order byte is set to zero.

Longints are returned as 4 bytes on the stack, (LSB first).

Strings are returned on the stack in the format described in the previous chapter.

Arrays and Records can be returned by Embedded Pascal functions as well. These however, are returned in the form of a pointer (two bytes) to the function result on the stack. This preserves stack space and executes much faster. This is possible since the only operation that can be done on this kind of function result is a simple assignment. �

Z80/Z180 or 805x Relocating Macro Assembler and Linker

The following chapters are dedicated to the Assembler and linker. This software forms the base upon which Embedded Pascal resides.

The assembler and linker that is part of Embedded Pascal is a full feature, industrial strength assembler and linker that can be used on its own without using any Pascal.

The assembler assembles source files with the extension “MAC”. It produces relocatable modules with the extension “RRO”. These modules are then linked to produce the final ROM image. The linker produces a 1:1 ROM image of a size that you can select the Options menu. Alternatively, the linker will produce a file that can be loaded using a CP/M compatible operating system (CP/M files are linked starting at address 100H – you still need to provide the Link instruction in the first source file).

The Z80/Z180 linker does not output Intel HEX file format while the 805x linker does.

For a file to be linked, it needs to be part of the project file. The project window on the main form lists all files currently belonging to the project.

The linker links the files listed in the project window in the order they appear. You can change this order by using File | Change link order.

Basic format of an assembler source file

Assembler source files optionally start with a link instruction followed by a “code” statement. This is followed by an “ORG” instruction if required.

The assembler source then follows.

A “data” statement is placed somewhere. All data location definitions follow.

The source file ends with an “End” statement.

Note: Z80/Z180 assembler supports code and data relocatable segments

The 805x assembler supports code,data,idata,xdata and bit relocatable segments

Example:

Link 0,8000H

Code

Jp reset

Org 38H

Jp interrupt

Org 100H

Reset:

	Ld sp,0F000H

:

:

ret

data

Counter:	ds 2

	End

Include files

Assembler files may use include files (one level, i.e. include files may not have include files of their own).

Files are included by placing the line:

		Include Filename.Mac

At the location you want the file to be assembled. The Filename may have a path prefixed if required.

Include Files may have an “end” statement as last statement, but this is optional.

Mnemonic extensions

The Z80/Z180 assembler understands ZILOG type mnemonics, i.e. LD HL,0 etc. using HD64180 extensions as defined by Hitachi, i.e. MLT HL.

A few extensions beyond this do exist:

	LD A,(IX)	- this is assumed to be LD A,(IX+0)

The 805x assembler follows INTEL mnemonics.

	MOV R1,#10

CALL and JMP are two generic assembler statements which do not have any direct op-codes. Instead, they will result in the opcodes for ACALL,LCALL,AJMP,SJMP or LJMP. The linker will decide which of these codes to place in order to produce the most compact code possible.

Relocatable areas

 Z80/Z180

	The assembler/linker supports the following relocatable areas:

	CODE and DATA

	CODE and DATA areas behave similar in all respects except for one:

	Everything in the CODE areas will go into the executable image,

	Anything in the DATA area will not, but is only used to create address

	references to RAM.

	Applications that will execute out of RAM may not require a DATA area.

805x

	The assembler/linker supports the following relocatable areas:

	CODE - 64Kbyte code area

DATA - 128byte (256byte) internal data area

IDATA – 128byte indirect accessible data area (8052 type CPU’s only)

XDATA – 64Kbyte external data area

BIT – 128 bit internal boolean variable area (20H-2FH)

	805x applications use at minimum code and data areas

The Link instruction

	Z80/Z180

	Every Source File should be started with a link instruction:

	LINK 0,8000H	;link code to absolute address 0, Data 0 to 8000H

 	LINK CODEADD,DATAADD ;link code and data to next address.

			(default)

 805x

 	The 805x assembler supports 5 link statements as follows:

	LINKCODE 2000H ;code segment to start at address 2000H

	LINKDATA 30H; data segment to start at address 30H

	LINKIDATA 0A0H; idata segment to start at address A0H

	LINKXDATA 8000H; xdata segment to start at address 8000H

	LINKBIT 10H ;bit segment to start at bit address 10H (3rd byte)

Instead of the address, you may pass the expression “ADD” (without the quotes). This would be identical to leaving out the link statement altogether as this is the default for any module.

	All segments default to address 0, except for the IDATA segment which defaults to address 80H

The ORG instruction

	CODE

	ORG 1000H	;start following code 1000H relative to beginning of code

			;area. I.e. creates a 1000H "hole".

	more interesting:

	CODE

	ORG 0,F000H	;starts linking following code to execute at beginning of

			;code area (current code address), but loads resulting

			;code at F000H. Useful for banked or overlay code.

			;the load address may have a range from 0000H to

			;3FFFFH (256K)

	The above is only intended to be used with the code segment. It has no use in any other segment.

	Linker output is executable ROM image. Check ROM size in options.

	Unused space is filled with FF's.

 805x linker produces Intel HEX file for first 64K code space as well.

Unusual Assembler statements

Here are some "unusual but useful" assembler statements. You may place these anywhere in your assembler code source.

	RUN THEFILE.EXE	; executes the specified file at link time during pass 1

				;i.e. before any ROM image is created.

	RUNWHENDONE THEFILE.EXE

				;as above but executes after ROM image has been

				;created on disk

	LOAD 8000H,THEFILE.DAT

				;after the ROM image is created, the contents

				;of the file are loaded starting at 8000H into the

				;ROM image. Useful for data tables etc.

				;Note: Only for ROM image, not for Intel HEX

				;output with 805x linker

	Note: All files must reside in the project directory. Any path statement is

	ignored. The project directory is made the "default directory".

	If any file is not found, the link process will continue without error.

	The linker output will show a "warning".

	

	WRITE EXPRESSION,LABEL

				;this function creates a new text file after the

				;assembly is completed without errors. The

				;textfile has the same name and path of the assembler

				;source file but with the file extension '.DEF'.

				

	Example:

	Assembler source file:	SOURCE.MAC

		

		WRITE SIZE,DATASIZE

		CODE

		LD HL,0

		;some code

		RET

		DATA

	START:		EQU $

	DATA1:		DS 10

	DATA2:		DS 10

	END:		EQU $

	SIZE:		EQU END-START

	;805x only:

		BIT

	BITONE:		DBIT

	BITTWO:		DBIT

		END

	This above example creates the file: SOURCE.DEF

	This file will contain a single line as follows:

	DATASIZE: EQU 0014H

MEMERROR value,string

This assembler directive can be used to check your code or data assembly pointer for exceeding certain limits and to stop the linking process on such an occurrence with an error message.

The value you pass must be a 16 bit number. The string should identify the position you are checking. This string may NOT contain any spaces.

Depending whether the statement is in the code or data segment, the current linker code or data pointer will be compared to the limit given as “value”. If equal or exceeded, the linker will stop with an error message. This error message will contain the text giving in “string”.

Use this statement in both code and data segments to warn you of possible problems due to code or data size limits exceeded.

 LOADERROR value,string

This assembler directive is very similar to the MEMERROR directive, however you can use it to check the current linker “load pointer”. (Remember, this assembler allows you to assemble code to run at one address but to load the code at a different address). The number supplied in “value” may be any value from 00000H to 3FFFFH (256K).

REPORT label,string

This useful assembler directive will report the value of “label” within the status window shown during linking. Use it for example to display the last address your code is using to see how much space you have left in your ROM etc.

The contents of “string” will be included in the “report”. Remember that “string” may not contain any spaces…

Assembler statements

	This is a short summary of valid assembler statements:

 	Note: no assembler statement may start in the first column of a line as it will be considered to be a label.

	DB 30H

	DB 30H+10H	

	DB 'Hello World'

	DB 'Hello World',0

	DB THELABEL,THEOTHERLABEL

	DW 0

	DW 10H+1000H

	DW 0,1,2,3,4,5,6

	DW THELABEL,THEOTHERLABEL

	DS 10

	DS THELABEL

	DS 10*5

	DS 20*BUFFERSIZE+5 ;BUFFERSIZE must be locally declared

	DBIT	;805x only

	THEEQUATE	EQU 10H+30H

	EXTERN LABEL1

	EXTERN LABEL1,LABEL2	;defines external labels

	GLOBAL LABEL1

	GLOBAL LABEL1,LABEL2	;defines global labels

	INCLUDE THEFILE.MAC		;includes an assembler file

					;note: includes may not be nested.

	MACRO				;opens a macro definition

	MACEND			;ends a macro definition

	END	;end of assembler text. Optional.

	RUN,RUNWHENDONE,LOAD,LINK,ORG,CODE,DATA

		;mentioned above

	TRUE EQU 1

	FALSE EQU 0

	OPTION1 EQU TRUE

	OPTION2 EQI FALSE

	IFTRUE	OPTION1

		LD HL,0

	ENDIF

	IFFALSE OPTION2

		LD DE,0

	ENDIF			;if statements may not be nested.

	;	comment. ignore following contents of line.

	LD A,30		;this is a valid comment

	LD B,20		however, this is as well !!! (no semicolon)

			this is not valid (needs semicolon)

	$;the current assembly pointer at the beginning of the current line.

	DJNZ $;DJNZ to itself (good for time delay)

	THEPOINTER EQU $; make a label to a specific location

	STARTOFDATA EQU $

		

	THEDATA 	DS 10

	MOREDATA	DS 5

	ENDOFDATA EQU $

	DATASIZE EQU ENDOFDATA-STARTOFDATA

	

Notes on DS and conditional assembly statements

The DS statement is used to define a block of memory. DS is evaluated at link time and thus may take in arguments only known at link time:

Example:

Extern SizeOfData

DS SizeOfData+10

Conditional assembly statements like “IfTrue”, “IfFalse” and “IfRef” are evaluated at link time.

Numbers

	The assembler understands Decimal, Hexadecimal, and Binary numbers:

	10	;a decimal number

	10D	;also a decimal number

	10H	;a hexadecimal number

	FFH	;also a hexadecimal number

	0FFH	;same here

	011B	;a binary number

	805x only:

	The # symbol before an expression signifies immediate addressing mode

	A ‘<’ placed before an expression with a word sized result will result in the low order byte value of the result.

	A’>’ placed before an expression with a word sized result will result in the high order byte value of the result.

Labels

	Labels must always start in the left-most column and may optionally be followed with a colon ":"

	Assembler statements must NOT start in the left most column.

	Labels must not resemble a valid number in either base.

Labels may contain any number of characters up to 255. They may further contain any character except: + - * / () < >. Colons ":" are optional and are never used when the label is refereed to.

	

For obvious reasons, labels must not resemble a valid numeric. The assembler will not complain if you define an invalid label, however you will not be able to access it. Example:

	ThisIsNot+aValidLabel:

When you try and use it, the assembler will try to find the labels ThisIsNot and aValidLabel and add their respective values. Since the labels will likely not exist, the assembler will tell you that the label could not be found.

	

	Here are some valid labels:

	HELLO_THERE:

	Hi

	I_am_a_label

	IAmAVeryLongLabel:

	123X

	X1234

	WhereShouldIGo?

	This:is:also:valid

	These are NOT valid labels:

ABCDH: 	;this is not a valid label (hex number)

	1234:	;this is not a valid label (decimal number)

	

operators

	In expressions, the following operators are legal:

	+ - * / ()

	The total number of open brackets in a statement must be kept below 50.

	LABEL1*(LABEL2+10*20)/25	;this is valid.

Note that all statements are evaluated using REAL numbers. The result is truncated to either byte or word depending on the operation.

 805x only:

A single “<” placed before an expression that has a 16 bit result (an address for example) inside an assembler statement that requires a 8 bit expression result will result in the lower 8 bits of the 16 bit expression being used. Similar, if you place a single “>” before the expression, the higher 8 bits of the 16 bit expression will be used.

Macros

A macro definitions starts with a label (the macro name), followed by the word MACRO, optionally followed by one or more argument placeholders (separated by comma):

	Here is an example that defines the 64180 instruction IN0 A,(port)

	INZA: 	MACRO ARG1

	 	DB 0EDH

 	 	DB 38H

 	 	DB ARG1

 	MACEND

	

	You would use this macro in your code as:

		INZA PORTADDRESS

		INZA 55H

		INZA 10H+20H

		INZA PORTBASE+4

Limitations exist with respect to Macro's:

	No labels are permitted inside macros.

	I.e. don't use JP Label InsideMacro. Use JP $-10.

Other:	The assembler is not case sensitive. LD HL,0 and ld hl,0 are both OK.

Overlays	

An unusual feature of this assembler is the capability to assist with code overlays. Code overlays are used to allow a system with limited "visible" code space to run large programs. This is done by swapping code in and

out of memory as required. This is very similar to the way Windows handles running programs that are larger than available memory.

A number of assembler directives exist that assist in creating overlays. These may also come in useful for other purposes.

The Assembler and linker maintains up to 31 “overlay information areas”. These areas contain all information that is required to handle overlays such as:

Number of overlay routines in an area.

Size of overlay buffer required

Load addresses in ROM

Etc.

Several assembler directives are available to assist:

Count n (n may be 1 to 31)

This directive instructs the assembler to maintain a count of all following bytes that are inserted into the code area in ROM. The count will be stored in the area number indicated.

SizeCounterZero n (n may be 1 to 31)

This directive instructs the assembler to set the code size counter of area n to zero.

StoreLarger n (n may be 1 to 31)

This directive instructs the assembler to store the current size counter of area n into a maximum size variable in area n, but only if the size counter is larger than the current maximum size.

StoreSize n, Labelname (n may be 1 to 31)

This directive instructs the compiler to create a global label with the name “labelName” and to associate this label with the maximum size variable stored in area n.

LoadMark n (n may be 1 to 31)

Store the current load address in ROM (Load address, not assembly address, which may be different…) into area n.

LoadResume n (n may be 1 to 31)

Change the current load address to the one stored in area n.

ORGMark n

Store the current assembly pointer in area n.

ORGResume n

Change the current assembly pointer to the one stored in area n

LoadRef LabelName

Create a global label with the name “LabelName” and associate it with the current load address in ROM. The load address is a 24 bit address.

DREF LabelName

Insert a 24 bit (3 byte – LSB first) number into the current assembly location. This number must have been created by “LoadRef” or “StoreSize”

DWSIZE LabelName

Insert a 16 bit (2 byte – LSB first) number into the current assembly location. This number must have been created with the “StoreSize” directive.

If you would like to use these assembler directives to create assembler overlay routines, you can do so. Rather than providing a lengthy tutorial for this, go and create a simple overlay project in Pascal and view the resulting assembler source, which uses all of the above directives. If you study the assembler code whilst armed with the above descriptions, you will understand the principle in less time it will take me to explain it !

Libraries

Embedded Pascal has a basic Library creation facility based on the conditional “IfRef”. A library is the exact equivalent of a normal assembler source file but contain a collection of routines for some purpose.

The aim is to cause the linker to only include the routines from the library that are actually required.

Assume you have a routine “inc32” that will increment a 32 bit number in HL and DE by one. You would like to turn this routine into a library routine.

 Global inc32

	IfDef inc32

Inc32:

	Ld bc,1

	Add hl,bc

	Ret nc

	Inc de

	Ret

	EndIf

The code between IfDef and EndIf will ONLY be included in the final output if the label Inc32 is referenced.

The following points are important and MUST be considered in order to have your libraries perform as expected:

Any library routine MUST be declared global. The library routine must NOT be referenced by any other routine within the same library source.

Sometimes you may need to include a routine that is referenced by more than one label. Here is how:

Assume you have a library routine “AddData” and “RemoveData”. Both of these routines need to use the inc32 example from above which may also be required if none of “AddData” or “RemoveData” is referenced.

Global inc32,AddData,RemoveData

	IfDef AddData

AddData:

 	---- Code for AddData ----

 	call Inc32a

	---- More code for AddData ----

	EndIf

	IfDef RemoveData

RemoveData:

 	---- Code for RemoveData ----

 	call Inc32a

	---- More code for RemoveData ----

	EndIf

	IfDef inc32,AddData,RemoveData

Inc32a:

Inc32:

	Ld bc,1

	Add hl,bc

	Ret nc

	Inc de

	Ret

	EndIf

If you were to call inc32 instead of inc32a from “AddData” or “RemoveData” the code for inc32 would allways be included as it is referenced regardless of whether “AddData” or “RemoveData” themselves are referenced.

Errors

Assembler errors will result in the assembler stopping at the first error and placing the editor to show the error location in the top line.

This is in contrast to many other assemblers which will continue listing all errors they can find. As the Embedded Pascal assembler is integrated with its own editor, stopping at the first error and placing the editor at that location results in faster and more convenient debugging.

The Last Word

Updates for this manual, updates to the Embedded Pascal Compiler, bug reports, Q&A’s and other information is available on the following websites:

http://users.iafrica.com/r/ra/rainier

http://www.geocities.com/siliconvalley/vista/1170

E-Mail contact for bug reports:

Rainier@IAfrica.com

Above internet addresses valid as of April 1998.

Embedded Pascal for Z80 / Z180 and 805x CPU’s

User Manual

Registered Trademarks are acknowledged to belong to their respective owners, notably Zilog, Hitachi, Intel, Microsoft and Borland.

Page � PAGE �6�

Procedure 3

Procedure 2

Procedure 1

Procedure 4

Procedure 1

Procedure 3

Procedure 2

ROM Image or CP/M file

Intel HEX file (805x only)

Linker

Relocatable object file (RRO format)

Relocatable object file (RRO format)

Relocatable object file (RRO format)

Relocatable object file (RRO format)

Assembler

Assembler

Assembler

Assembler

Compiler

Compiler

Assembler Source File

Assembler Source File

Assembler Source File generated from Pascal File

Assembler Source File generated from Pascal File

Pascal Source File

Pascal Source File

